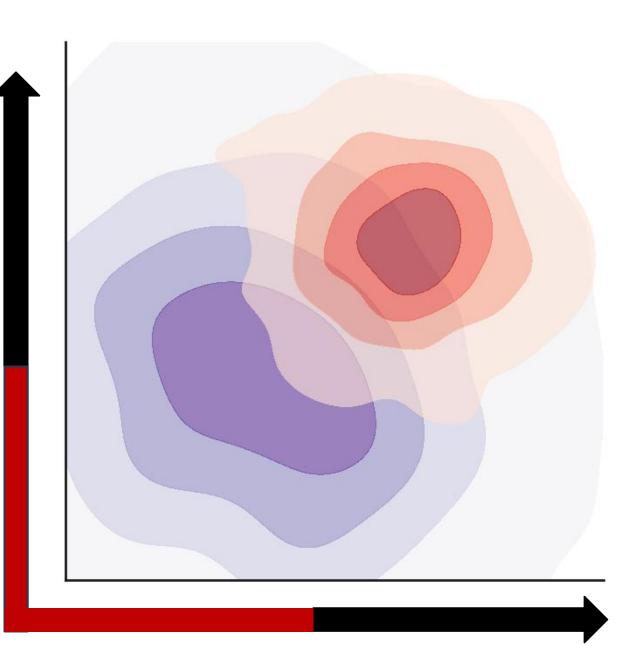

CAUSAL EFFECTIVE FIELD THEORIES

Mariana Carrillo González

Quantum Spacetime and the Renormalization Group

IMPERIAL


EFFECTIVE FIELD THEORIES

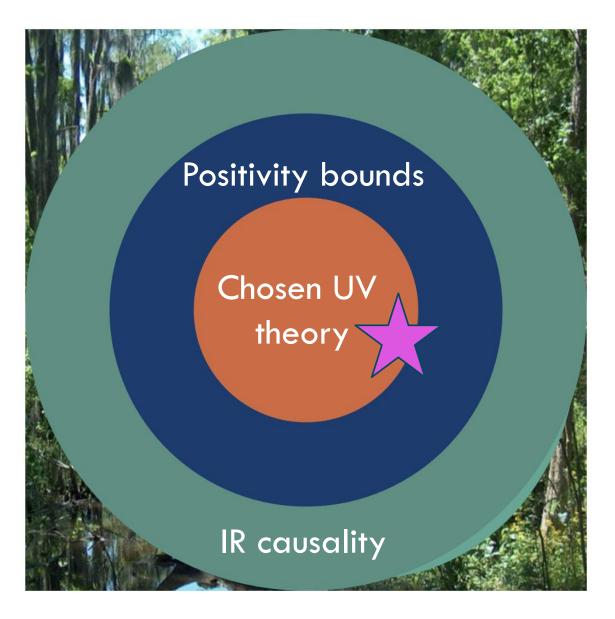
 $\mathcal{L} = \Lambda^4 \sum_n c_n \Lambda^{-n} \mathcal{O}_n$ $\Lambda - \left[\text{EFT For example: } \mathcal{L}_{\phi} = -\frac{1}{2} (\partial \phi)^2 + \frac{c_8}{\Lambda^4} (\partial \phi)^4 + \dots \right]$

What are the values of the Wilson coefficients consistent with physical principles?

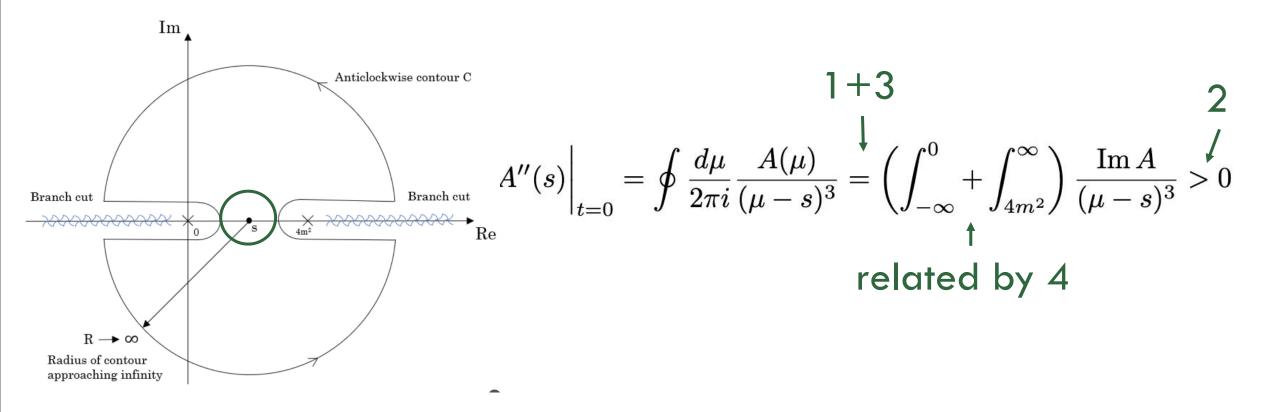
WHY DO THE VALUES OF WILSON COEFFICIENTS MATTER?

Theoretical priors can drastically change the estimation of parameters in a BSM model

UV = string theory, asymptotic safety, loop QG


UV = local, unitary, causal, Lorentz invariant Swampland conjectures

 Positivity bounds / Smatrix bootstrap
 (Flat space, mostly 2-2 scattering)


Causal IR propagation

Causality bounds

 (1-1 in any non-trivial background)

POSITIVITY BOUNDS 1 2 3 4 UV = local, unitary, causal, Lorentz invariant

CAUSALITY BOUNDS ON FLAT SPACE

MICROCAUSALITY
$$[\mathcal{O}(x), \mathcal{O}(y)] = 0$$
 for $(x - y)^2 > 0$
 \longrightarrow $G_R(x, y) = 0$ for $(x - y)^2 > 0$

Consider local propagation of information $\phi = \phi^{bckg} + \delta\phi$ around fixed backgrounds and their implication on Wilson coefficients (Adams et al. 2006, de Rham, Tolley: 2020) EFT mode In flat space, diagnose by looking at time Localized ϕ^{bckg} High-energy mode delay: $\Delta T = -i\langle \mathrm{in} | \hat{S}^{\dagger} \frac{\partial}{\partial \omega} \hat{S} | \mathrm{in} \rangle$

Work within the regime of validity of EFT and WKB approximation (for welldefined phase shift)

For a time-dependent background:

$$\sum_{\phi} \delta \phi_k$$

$$\begin{split} \delta\phi_k \sim e^{-ik\int c_s^{\text{eff.}}(t) \ dt} \\ G_{\text{ret}}\left(t,t'\right) &= \theta\left(t-t'\right)i\left(\phi_k(t)\phi_k^*\left(t'\right) - \phi_k\left(t'\right)\phi_k^*(t)\right) \\ &\Rightarrow |G_{\text{ret}}(t_1,t_2,k)| \leq e^{|\text{Im }k| \int_{t_1}^{t_2} (c_s^{\text{eff}}(k,\tilde{t})-1) d\tilde{t}} e^{|\text{Im }k| \ |t_2-t_1|} \\ &\delta \\ \Delta T &= 2\frac{\partial\delta}{\partial\omega} \end{split}$$

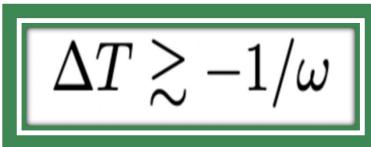
CC

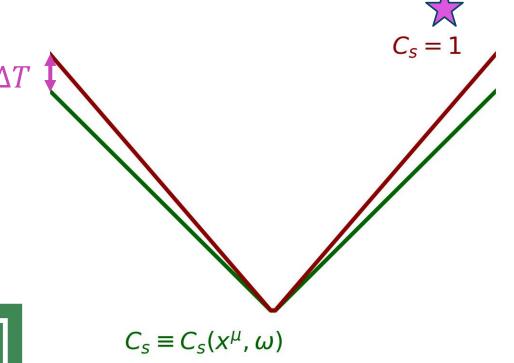
Support of the Green's function

$$|G_{\rm ret}(t_1, t_2, k)| \le e^{|{\rm Im}\ k| \int_{t_1}^{t_2} (c_s^{\rm eff}(k, \tilde{t}) - 1) d\tilde{t}} e^{|{\rm Im}\ k| |t_2 - t_1|}$$

Paley-Wiener theorem: Fourier Transform has compact support of radius $|t_1 - t_2|$ if:

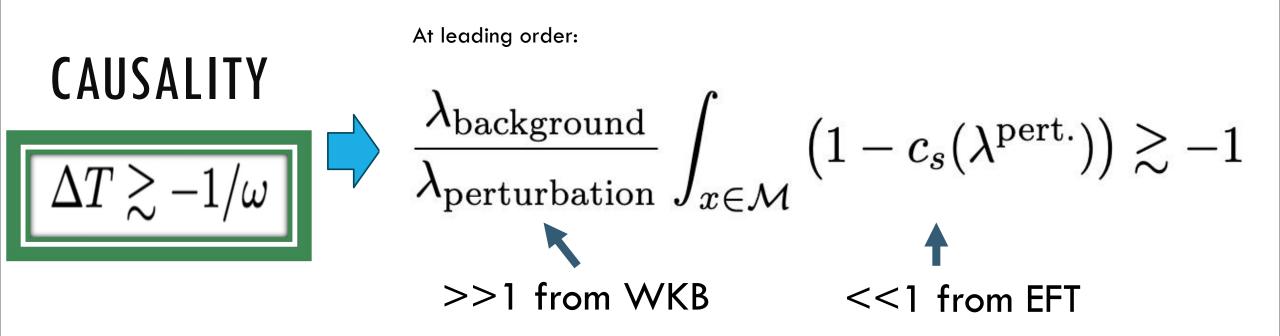
$$|G_{\rm ret}(t_1, t_2, k)| \le C(D + |k|)^N e^{|{\rm Im} \ k| \ |t_2 - t_1|}$$

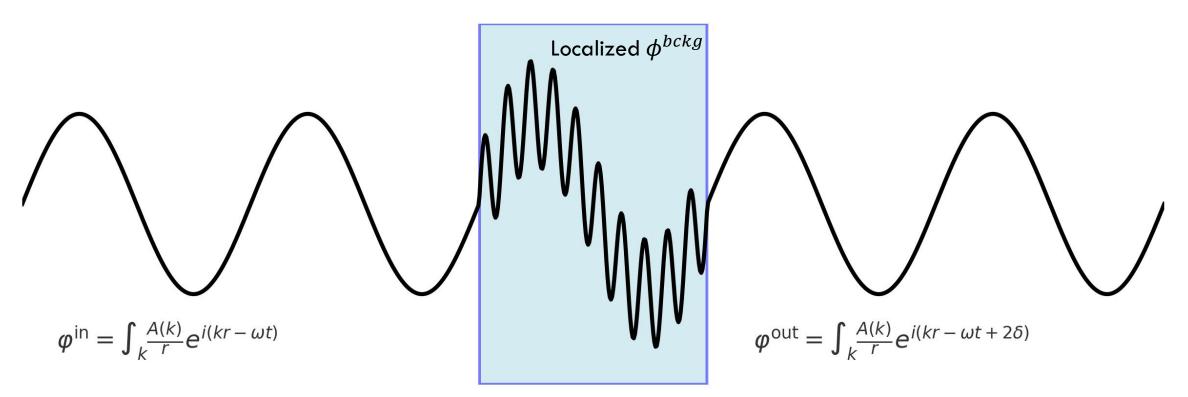

Implications on theories with broken Lorentz invariance (Hui, Nicolis, Podo, Zhou: 2025)


RESOLVABLE TIME DELAYS $\Delta T = 2 \frac{\partial \delta}{\partial \omega}$

Due to the uncertainty principle, time delays cannot be resolved if:

$$|\Delta T| \le \lambda \sim \frac{1}{\omega}$$


CAUSALITY


(Eisenbud; 48, Wigner; 55) (T. J. Hollowood and G. M. Shore: 2015)

Acuasality needs $c_s > 1$ over large enough regions

TIME DELAYS AND SPATIAL SHIFTS

At fixed r, $\Delta T = 2 \frac{\partial \delta}{\partial \omega}$ for ω conserved At fixed t, $\Delta x = -2 \frac{\partial \delta}{\partial k}$ for k conserved

If $\Delta T < -1/\omega$ or $\Delta x > 1/k$ the wave leaves the scatterer before it arrives to it

CLOSED TIMELIKE CURVES

 $\Delta T < -1/\omega$ Localized ϕ^{bckg}

Chronology protection mechanism

(Kim, Thorne; 91, Hawking 92) **for EFTS:**

Strong backreaction at the quantum level prevents the formation of CTCs

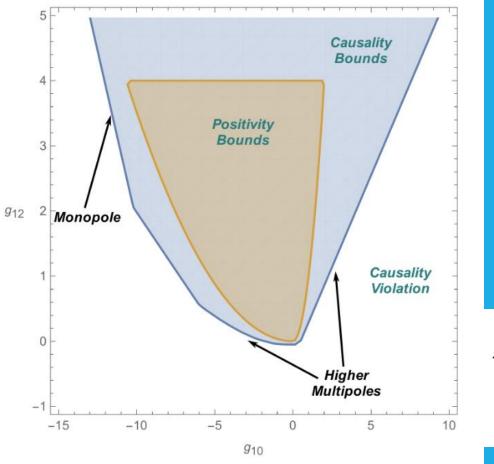
CTCs are not constructible in the regime of validity of EFT

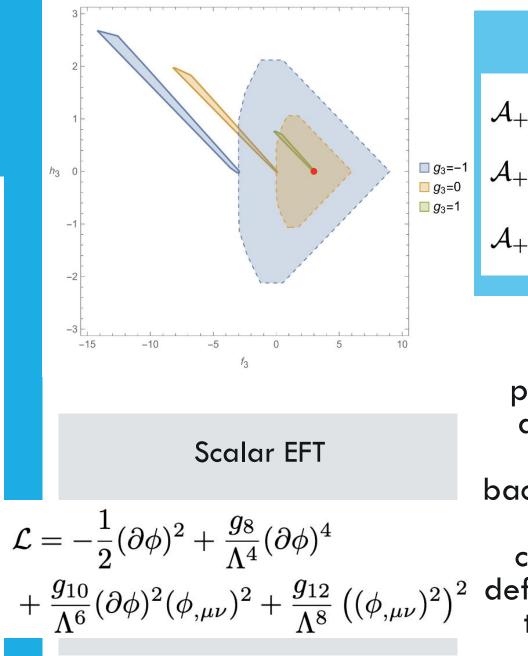
(E. Babichev, V. Mukhanov, and A. Vikman; 2007, C. Burrage, C. de Rham, L. Heisenberg, and A. J. Tolley; 2011, D. E. Kaplan, S. Rajendran, F. Serra; 2024)

EXAMPLES

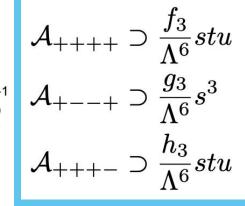
Scalar EFT:
$$\mathcal{L} = -rac{1}{2}(\partial\phi)^2 + rac{g_2}{2}(\partial_\mu\phi)^4$$
 $q_2>0$

Same as simplest positivity bound:


$$\partial_s^2 \mathcal{A}(s) > 0$$

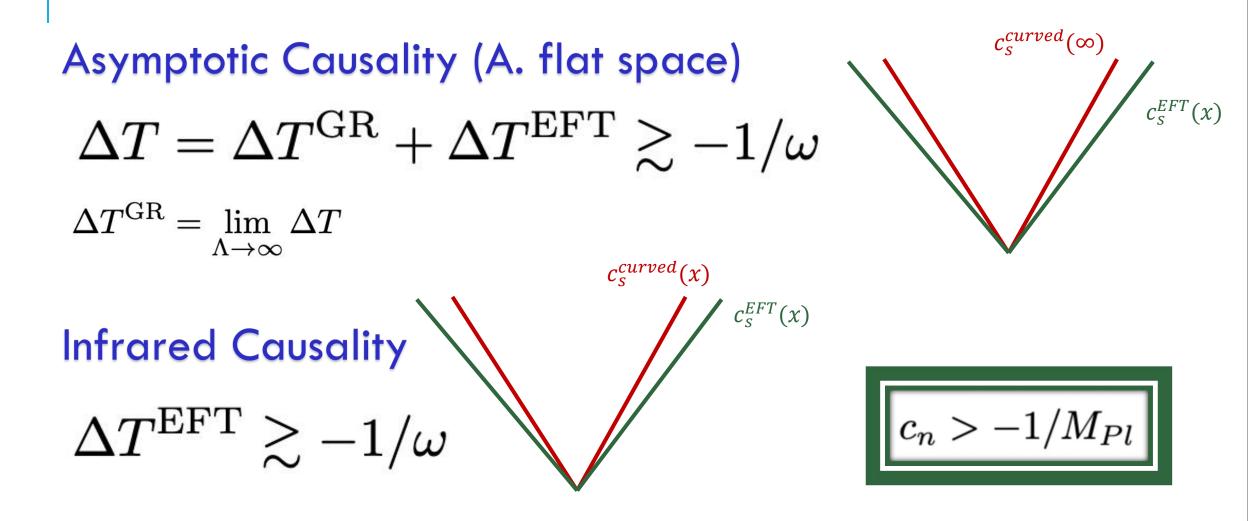

Photon EFT:

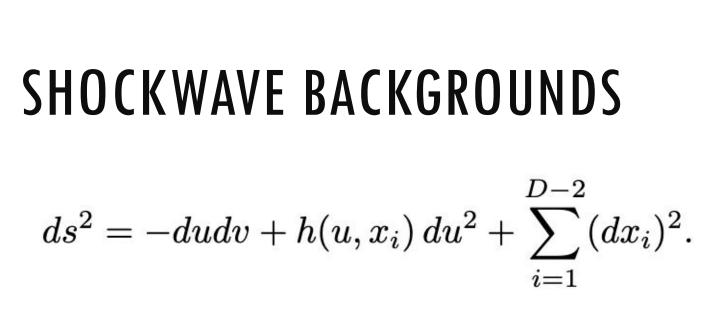
$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \alpha_1 (F_{\mu\nu} F^{\mu\nu})^2 + \alpha_2 (F_{\mu\nu} \tilde{F}^{\mu\nu})^2$$
$$\alpha_1 \ge 0, \qquad \alpha_2 \ge 0 \qquad \checkmark$$


Adams et al. 2006 + verifications in many subsequent works

BOUNDS ON HIGHER ORDER OPERATORS

Photon EFT


Causal propagation around any localized background that can be continuously deformed to the trivial one.


(MCG, C. de Rham, V. Pozsgay, A. Tolley; 2022) (MCG, C. de Rham, S. Jaitly, V. Pozsgay, A. Tokareva; 2023)

CAUSALITY BOUNDS ON CURVED SPACE

NOTIONS OF CAUSALITY ON CURVED BACKGROUNDS

Related to eikonal limit of scattering amplitudes

$$S = \int d^{D}x \sqrt{-g} \left(R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \alpha_{1} (F_{\mu\nu} F^{\mu\nu})^{2} + \alpha_{2} (F_{\mu\nu} \tilde{F}^{\mu\nu})^{2} + \alpha_{3} W^{\mu\nu\alpha\beta} F_{\mu\nu} F_{\alpha\beta} \right)$$

 P_u

 Δv

 $\mathbf{p}_{\mathbf{v}}$

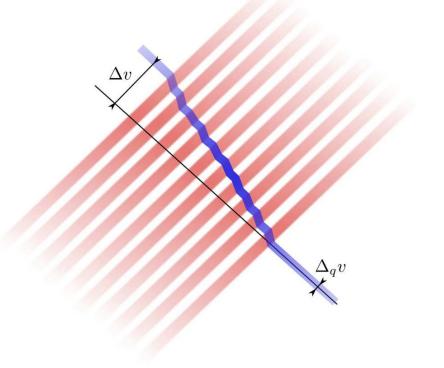
T. Drummond and S. J. Hathrell; 80; X. O. Camanho, J. D. Edelstein, J. Maldacena, A. Zhiboedov; 2014, T. J. Hollowood and G. M. Shore; 2025, S. Cremonini, B. McPeak, Y. Tang; 2023, C. Y. R. Chen, C. de Rham, A. Margalit, and A. J. Tolley; 2025

PHOTON IN A CURVED BACKGROUND

$$S = \int d^{D}x \sqrt{-g} \left(R - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \alpha_{1} (F_{\mu\nu} F^{\mu\nu})^{2} + \alpha_{2} (F_{\mu\nu} \tilde{F}^{\mu\nu})^{2} + \alpha_{3} W^{\mu\nu\alpha\beta} F_{\mu\nu} F_{\alpha\beta} \right)$$

Time delay for photon on charged shockwave background:

$$\Delta v = \boxed{-\frac{3\pi q_0^2}{M_{\rm P}^2 \rho} - 16\frac{m_0}{M_{\rm P}^2}\log\rho}_{\text{geometry}} + \frac{\alpha_i \frac{48\pi q_0^2}{\rho^3} \pm \alpha_3 \left(\frac{18\pi q_0^2}{M_{\rm P}^2 \rho^3} - \frac{64m_0}{M_{\rm P}^2 \rho^2}\right)}_{\text{geometry}}$$


The log issue in 4D can be avoided by: 1) IR cutoff + A. Causality, 2) IR Causality, 3) negativity of derivative of time delay (T. Dray and G. 't Hooft; 85)

RESOLVABILITY

$$\Delta T_{\ell}^{\text{EFT}} = \pm \alpha_3 \frac{2r_g}{b^2 \Lambda^2} \ll \sqrt{\frac{r_g}{b}} \omega^{-1} \ll \omega^{-1}$$

$$\alpha_3 \to \alpha_3 / \Lambda^2 \qquad \text{Validity of EFT} : \omega \ll \Lambda^2 \sqrt{\frac{b}{r_g}}$$

Time delay is unresolvable within the regime of validity of the EFT even when multiple shockwaves are stacked (C. Y.-R. Chen, C. de Rham, A. Margalit, A. J. Tolley; 2024)

CAUSAL PHOTONS IN A CURVED BACKGROUND

Weak Gravity Conjecture

Weakened positivity ($c_n < -1/M_{Pl}$): small violations of WGC are consistent with unitarity and causality (L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley; 2020, Henriksson, B. McPeak, F. Russo and A. Vichi; 2022)

Quasi-normal modes

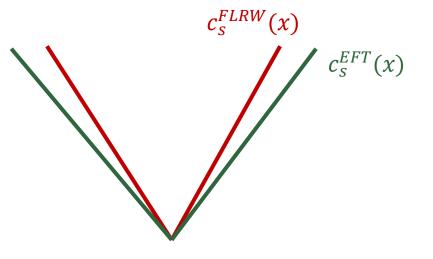
Causal EFT corrections make quasi-normal mode perturbations decay faster. (Melville; 2024)

(A)DS BACKGROUNDS

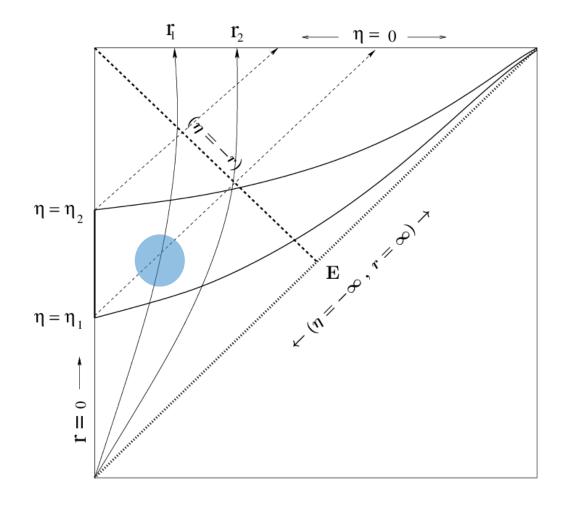
AdS

- Causality implies that the geodesics between boundary points lie at the boundary (Gao, Wald; 2000)
- Bulk Causality = ANEC of the boundary (W.R. Kelly and A.C. Wall; 2014)
- Commutativity of shockwave implies bounds on the EFTs (M. Kologlu, P. Kravchuk, D. Simmons-Duffin and A. Zhiboedov; 2019)

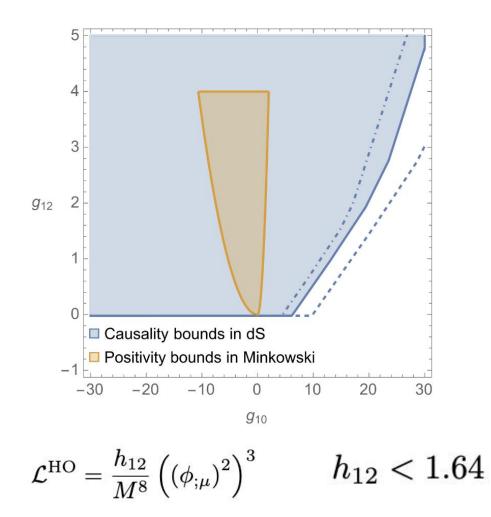
dS


- The "fastest geodesics" (reach the future boundary with the largest positive spatial shift) is the one with the largest impact parameter (N. Bittermann, D. McLoughlin and R.A. Rosen; 2022)
- IR causality: The reference lightcone is the one of a minimally coupled highenergy particle in dS (de Rham, Tolley; 2020, Carrillo-Gonzalez; 2023)

CAUSALITY IN FLRW $ds^2 = a^2(\tau)(-d\tau^2 + d\vec{x}^2)$

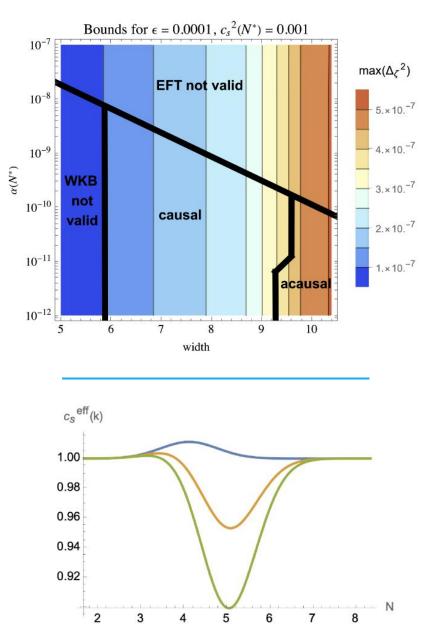

$$\frac{k}{a(t_f)} \left(a(t_f) \Delta r \right) \sim k \int_{t_i}^{t_f} \frac{dt}{a(t)} \left(c_s^{\text{EFT}}(k,t) - c_s^{\text{FRW}}(k,t) \right) < 1$$

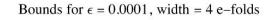
Causal EFTs have negative physical spatial shifts, up to a positive unresolvable contribution.

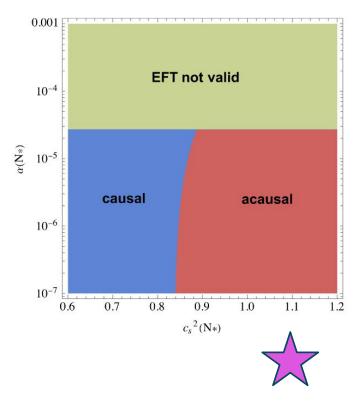

EFT modes should not travel outside of the particle horizon.

Scalar EFT in de Sitter

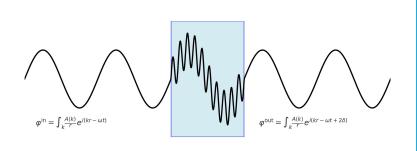
$$\begin{aligned} \mathcal{L} &= -\frac{1}{2} (\nabla \phi)^2 + \frac{g_8}{\Lambda^4} (\nabla \phi)^4 \\ &+ \frac{g_{10}}{\Lambda^6} (\nabla \phi)^2 (\phi_{;\mu\nu})^2 + \frac{g_{12}}{\Lambda^8} \left((\phi_{;\mu\nu})^2 \right)^2 \end{aligned}$$

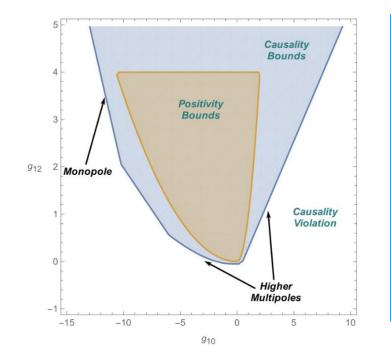


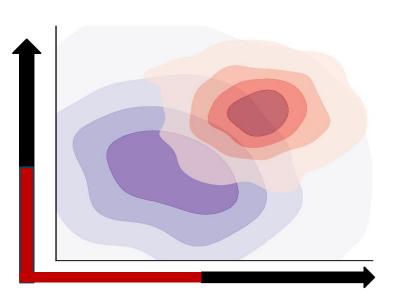

(MCG; 2023)


EFT OF

$$(c_s^{\text{eff}}(k,N))^2 = c_s^2(N) + \alpha(N) \frac{k^2}{a^2 H^2}$$


Bounds on time dependence of Wilson coefficients





(MCG, S. Cespedes; 2025)

CAUSALITY BOUNDS ON EFTS

BACK-UP SLIDES

ASSUMPTIONS

Property	Causality Bounds	Positivity Bounds
Lorentz	• Lorentz invariant EFT	• Invariant EFT and UV completion
invariance		• Crossing symmetry
Unitarity	• Hermitian Hamiltonian:	• Positive discontinuity
	real Wilson coefficients	of the EFT and UV amplitude
Causality	• No resolvable time advance	• Analyticity of amplitude
		in the complex s plane for fixed t
Locality	• IR theory is local	• IR and UV theories are local
		• Froissart-like bound in the UV
Other	• EFT and WKB expansions under control	
assumptions	• Background generated by	• IR EFT is under perturbative control
	localized external source	