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QUANTUM FIELD THEORY

Fundamental interactions in nature Condensed matter (Ising spins, Fermi
(electroweak and strong interaction) liquids, etc.)

Atom Nucleus

And quantum gravity (AdS/CFT, asymptotic safety).
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Weak coupling Strong coupling
— electron anomalous magnetic - functional RG (derivative
moment expansion): no small parameter
- 4 — e expansion: € not small
- lattice (numerics): refinement limit












BeyonDp CFT

Vector with N components (spherical model, O(N) model)

Matrix with N? entries (Quantum Chromodynamics SU(N), N = 3)

Access the strong coupling regime in a 1/N expansion! J

Vectors — large N limit solvable but too restrictive in any dimension [gerlin. Kac *52; Stanley '65:.]
Matrices — planar limit very difficult in more than zero dimensions [t Hooft 74;..]
Tensors — melonic limit in between non trivial but accessible in any dimension

[Sasakura '90; Ambjarn et al. *90; Boulatov '92; Ooguri '92,... Gurau 10 '11; Rivasseau '11, Bonzom '11,... Witten 16; Klebanov et al. "17,18; Minwalla et al. *17;

Tseytlin et al. *17; Ferrari et al. *17, ... Benedetti Harribey 19 ...]



THE THREE LARGE N LIMITS

Vectors — simple Matrices - complicated
“snails” local insertions planar

Tensors — in between
“melonic”: recursive bilocal insertions










@ The garden variety ¢* model



An apology for the free theory — the Gaufian free field
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It is not enough to know the correlations of ¢, we need the correlations of arbitrary local operators
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It is not enough to know the correlations of ¢, we need the correlations of arbitrary local operators

Scaling operators (eigen operators) include O, = ¢", but (¢"(x)) ~ Cxx = 00

Renormalized operators by Wick ordering
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There is work to do even in free theories...




Wilson’s renormalization group
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Wilson’s renormalization group

z= / Dy S | sw) = () + V(¥)

Si(0) =5 [ dxb(-0,0000 V)= S [ dhx o)

Decompose ) = ¢ + x with:
e low modes ¢(x) = fl j<n € *(p)
e fluctuations x(x) = flp\>/\ e’ *4h(p)
Integrate the fluctuations to get effective action:
z=[ Dy, Mg)  =s(@)—in [ Dye s
~—~— [p|>A

[pI<A
Effective action at scale A

Low energy correlations:

(600 00)) = 3 [ P 5 Do0)..000) = 3 [ Do e D(x).. 603
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with Ay = % the canonical field dimension:

$0) = N2 E(R) |y, s 079" (x) = ARG (R)ip,




Aj

Aoy — 20 [ ddy a(—o. ok d—(niAg + pi) . 5 d\ OPi bMi
sMe) = B dx ¢(—0,0 )¢+Z/\ ¢ &(N) Zg [ dx 979" (x)

with Ay = % the canonical field dimension:

G0 = A FR) |y, O(x) = N TR
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CT()\) + K

S(y) = /ddx (%8M¢3N¢+ W+ ¢4)

Counterterm tunes to criticality (¢'¢))| = 0 and « is perturbation with respect to the critical

k=0,p=0
theory

Compute in perturbations: sj\z) . n)\Q +(—a) (1 —X2_, @.) +o(a?), 55\4) - A2)<>(

Z 1 — 1 —
Project on local operators: SA(d)) = /ddx (—A Op pHp + — ;Ld 2A¢g2(/\)ZA ¢oz + — }_l,d By g4(/\)Z/2\ 454) + CT + irrelevant
2 2! 41
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0(g) : Yo =Ag, Po=—(d—204)8+Bgg&, Pi=—(d—4Dy)@+Cg



Fixed points in the ¢* model
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9¢z = 2 but g4 marginal



Fixed points in the ¢* model

o(g) : Yo =Ag, Br=—(d-204)&2+Bgrg, Ba=—(d—40y)g+Cg

d=d4—e(Bp=1-%5) Vp=A&, bo=—"2+Bga, bs=—eaa+Cg

o Gaufian (g5, 85 |*y(;) = (0,0 |0), two relevant

directions 9¢4 =, 9¢2 =2 TJT
e Wilson Fisher (g}, g7 |'y;) = (%6,0 \%62), one ’T CF %?_—’7 &
relevant 9¢z = 2 — B¢ and one irrelevant 9¢4 = —¢, ﬁ/ f

@

d=4(Dp=1) v =Ag, Bo=-25+Bghg, ba=Cg

GauBian (g7, & |v5) = (0,0 |0), one relevant direction

042 = 2 but g4 marginal - solve for g(A) TL
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» g, > 0 trivial (free) infrared theory, no ultraviolet complete trajectory (Landau pole)

» g4 < 0 ultraviolet complete (asymptotically free)
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d=4(Dp=1) v =Ag, Bo=-25+Bghg, ba=Cg

GauBian (g7, & |v5) = (0,0 |0), one relevant direction

042 = 2 but g4 marginal - solve for g(A) TL
ga(1) K

&(N) =

1
1 — Corli) In( M) NAbreak down = }Lem > u =
=) =

» g, > 0 trivial (free) infrared theory, no ultraviolet complete trajectory (Landau pole)

> g < 0 ultraviolet complete (asymptotically free) but unstable — the “wrong sign ¢* model”









@ The O(N)? tensor model






Invariants contract indices in the same position:

o quadratic invariant Y Ya,aya; Yayapas



Tensors and invariants

Order 3 tensor 1/)211,2[,3 — oM 0@ o

bray “bya, ~bsaz

Yaazas, iNvariant action

Invariants contract indices in the same position:

e quadratic invariant Y %a; aya3%a ayas
e quartic invariants:

4
[w ] tetrahedral = Zwm aaz wb1 bybs wﬁ ©Qc3 ¢d1 dyds

abed

(6111 by ‘Sq d 6a2c2 51)2 dy 5:13 d3 6[)3 a3 )

4
[ ] pitiow = Z%]am%] bobs VercresVedydods
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(541 by 6“2 by )643 d3 5173 [5) (561 di 662 d) )

4
['@b ]double trace — Zd)mazaﬂpm by b3 "bc1czc3¢d1d2d3

abed
(6111 by 6(12 by 6a3 b3 )(6c1 dy 662 dy 663 d3 )

T/Jb] by b3 ¢’C1 Qe
Sayby
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Q0
OO



Graphs - all indices are identified along propagators hence:
e free sum per “face”, that is cycle of propagators and edges of one color
e pairwise identification of external indices

o N
~ s 9l
NS

— N3
~ N3/2N3Z T N



PARTITION FUNCTION, CORRELATIONS, 1/N AND ALL THAT

Invariant action [Carrozza Tanasa *15, Giombi Klebanov Tarnopolsky *16 17 *18]

s= [ ax [wmag( 00" Ybranes + — 9710 + 2 [], + 2L [,

N3/2 4N? 4N3
Graphs - all indices are identified along propagators hence:
e free sum per “face”, that is cycle of propagators and edges of one color

e pairwise identification of external indices

~ s e
6

— N3
~ N3N T N

1/N expansion

5 _s
In /Dlﬁ eis(w) = N3FLO + N2 O + O(NZ) s <[¢p]invariant = NLO Z N2 G (Xl)
s>0



BETA FUNCTIONS AT LARGE N

Flow of the tetrahedral coupling driven by the wave function at all orders in perturbation theory

At + no radiative correction!
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Flow of the tetrahedral coupling driven by the wave function at all orders in perturbation theory

—(d—40,) At + no radiative correction!
2
Z/\

&N\ =pu

d = 4 — e dimensions [Giombi Kiebanov Tarnopolsky '17]

2
B=—cg+2g, Bp = —egp + (682 + 58,27) - 288

4
By = —egd + (58?» + 4gpgd + 2g§) —2¢°(48 + 584) »

&=/, gu==%i3(c/2)?, g =FiBEVI)(e/2)"?,
Wilson Fisher like fixed point with limit cycles.



Flow of the tetrahedral coupling driven by the wave function at all orders in perturbation theory

—(d—4Dy) At + no radiative correction!
Z

FAGVENT

d = 4 dimensions

2 4
B=28, By = 6g" + 53,2; —-288 Ba = gg,zy + 48p8a + 285 — 287 (48p + 584)

8(r)?
1= ag(u) (%)
Gaufian fixed point is attractive on both sides — Landau pole (infrared trivial) for both signs of g

g(N)? =



BUT NOT ALL THE INVARIANTS HAVE A DEFINITE SIGN!

[ ] pittow = Z Z VayayasOaybr Oazby Phibyby | = 0

azc3 \ajapbiby

2
[w‘l]double trace — <Z "Z}a1a2a3 5a1 by (sazbz 5a3b3 wb1 b2b3> >0

ab
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ab

For % a discrete Fourier transform of a Wigner 3 symbol, [¢)*] cetratedrat is the 6j symbol which
changes sign with j






AN ASYMPTOTICALLY FREE MODEL

As [¢']p, [¢*]4 > 0 but [¢*]; can be positive or negative, stability guaranteed only if

e g — 1g like in the Lee-Yang 2¢> model
* 8,8 >0withg =g/3.8 =g +8

1
Y = —Egz . B==28, Bi=2Ag-g+88), Bo=2g -3¢ +588)

1

g(N)? = T Zp = [1+4g(u)2 In(A)} 'z Aqcp = pe B < "
T+ag(p)2In(4) 7 Iz "

g2/ (4)

a1/ (4m)?

04 5 The red separatrix
2 = is asymptotically
oo
00 o < free and stable
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(in picture — p momentum, u renormalization scale, m? renormalized mass)
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@ Conclusion



INSTEAD OF CONCLUSION: THE FUTURE

We have:
e and asymptotically safe and stable scalar model

- solvable at large N
- real quantum effective action at large N

e a candidate ultraviolet fixed point for the model coupled to asymptotically safe gravity
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