Indications for particle physics from asymptotic safety

Kamila Kowalska

National Centre for Nuclear Research (NCBJ) Warsaw, Poland

in collaboration with E. M. Sessolo and A. Chikkaballi, S. Pramanick, D. Rizzo, Y. Yamamoto

Mainly based on: Eur.Phys.J.C 81 (2021) 4, 272 (arXiv: 2007.03567) JHEP 08 (2022) 262 (arXiv: 2204.00866) JHEP 11 (2023) 224 (arXiv: 2308.06114) and work in progress

Quantum spacetime and the Renormalization Group 2025

Heidelberg, 31.03.2025

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

... why we like it

... how we get it

Trans-Planckian fixed point for gravity (FRG)

M. Reuter, F. Saueressig , PRD 65, 065016 (2002)

Other possibility in 4D:

• Gauge-Yukawa (Li-Sa) models (Litim, Sannino, JHEP 1412 (2014) 178)

Trans-Planckian corrections to matter RGEs (FRG)

 $k > M_{\rm Pl}$

fixed points for matter

parametric description of (universal) gravity contributions

e.g. A. Eichhorn, A. Held, 1707.01107 A. Eichhorn, F. Versteegen, 1709.07252

heuristic approach: confront AS with low-scale pheno

Kamila Kowalska

... what we can learn

- **Predictions** for Beyond the Standard Model
- **Consistency** of the IR physics with the AS ansatz
- Naturally small parameters (eg. neutrino masses)
- Forbidding couplings allowed by symmetries
- Conclusions

Predictions for BSM

Working assumption: there is a <u>UV interacting</u> FP for (some) SM couplings

Kamila Kowalska

Example: leptoquark mass

also: complementary predictions in flavor: ex. D-meson decays

Kamila Kowalska

Example: leptoquark mass

KK, E.M.Sessolo, Y.Yamamoto, Eur.Phys.J.C 81 (2021) 4, 272 SM + LQ + QG

Some other works along this lines...

• anomalies in $b \rightarrow s$

A.Chikkaballi, W. Kotlarski, KK, D.Rizzo, E.M.Sessolo, JHEP 01 (2023) 164

• anomalies in $b \rightarrow c$

KK, E.M.Sessolo, Y.Yamamoto, Eur.Phys.J.C 81 (2021) 4, 272

• muon *g-2* KK, E.M.Sessolo, Phys. Rev. D 103, (2021)

Other AS predictions for BSM

Reichert, Smirnov, 1803.04027; Grabowski, Kwapisz, Meissner, 1810.08461; Hamada, Tsumura, Yamada, 2002.03666, Eichhorn, Pauly, 2005.03661; de Brito, Eichhorn, Lino dos Santos, 2112.08972, Boos, Carone, Donald, Musser, 2206.02686, 2209.14268, Eichhorn, dos Santos, Miqueleto, 2306.17718

mass predicted

$$M_{S_3} \in (4.5,7) \text{ TeV}$$

In the reach of the FCC!

also: complementary predictions in flavor: ex. D-meson decays

Kamila Kowalska

Predictions for BSM

PROS:

- UV constraints on BSM (a priori free) couplings
- Allows to pinpoint BSM masses when confronted with data
- Predictions are (very) robust W.Kotlarski, KK, D.Rizzo, E.M.Sessolo EPJC '23, arXiv: 2304.08959

Predictions for BSM

PROS:

- UV constraints on BSM (a priori free) couplings
- Allows to pinpoint BSM masses when confronted with data
- Predictions are (very) robust W.Kotlarski, KK, D.Rizzo, E.M.Sessolo EPJC '23, arXiv: 2304.08959

CONS:

- Interactive fixed point in the SM needed but... A. Pastor-Gutiérrez, J. M. Pawlowski, M. Reichert SciPost Phys. 15 (2023) 3, 105
- <u>Very specific</u> values of f_{g} , f_{y} required \rightarrow What about FRG?
- Only useful when there is experimental data
- No clear way of checking consitency with AS (case by case analysis needed)

Consistency between AS and pheno

Consistency between AS and pheno

VL fermions:

$$\mathcal{L}_{NP} \supset (Y_R \ \mu_R E'S + Y_L \ F'S^{\dagger}l_{\mu} + Y_1 \ E \ h^{\dagger}F + Y_2 \ F'h \ E' + H.c.)$$

$$\overline{Y_R^* \neq 0, \ Y_L^* \neq 0, \ Y_1^* \neq 0, \ Y_2^* = 0} \quad \text{to explain g-2} \quad \text{in the context of g-2}$$

$$\frac{dy_{\mu}}{dt} = \frac{1}{16\pi^2} \left\{ \left[3y_t^2 + C_1 \left(Y_1^2 + Y_2^2 + \frac{1}{2}Y_L^2 + \frac{1}{2}Y_R^2 \right) - \frac{15}{4}g_Y^2 - \frac{9}{4}g_2^2 \right] y_{\mu} + C_2 \ Y_2 \ Y_R \ Y_L \right\} - f_y \ y_{\mu}$$
allows for $y_{\mu}^* = 0$ muon mass correct
Leptoquark:

$$\overline{Y_{32}^{R*} \neq 0, \ Y_{32}^{L*} \neq 0} \quad \text{to explain g-2}$$

$$\frac{dy_{\mu}}{dt} \sim -(y_t) \ Y_{33}^R Y_{23}^L \qquad \text{does not allow for } y_{\mu}^* = 0 \qquad \text{muon mass incorrect} \sim \text{top mass}$$

Consistency between AS and pheno

VL fermions:

$$\mathcal{L}_{NP} \supset (Y_R \mu_R E'S + Y_L F'S^{\dagger}l_{\mu} + Y_1 E h^{\dagger}F + Y_2 F' h E' + H.c.)$$

$$Y_R^* \neq 0, Y_L^* \neq 0, Y_1^* \neq 0, Y_2^* = 0 \quad \text{to explain } g-2 \quad \text{in the context of } g-2$$

$$\frac{dy_{\mu}}{dt} = \frac{1}{16\pi^2} \left\{ \left[3y_t^2 + C_1 \left(Y_1^2 + Y_2^2 + \frac{1}{2}Y_L^2 + \frac{1}{2}Y_R^2 \right) - \frac{15}{4}g_Y^2 - \frac{9}{4}g_2^2 \right] y_{\mu} + C_2 Y_2 Y_R Y_L \right\} - f_y y_{\mu}$$
allows for $y_{\mu}^* = 0 \quad \text{muon mass correct}$
Leptoquark:

$$Y_{32}^{R*} \neq 0, Y_{32}^{L*} \neq 0 \quad \text{to explain } \rho$$

$$\frac{dy_{\mu}}{dt} \sim -6y_{\mu} Y_{33}^{R} Y_{23}^{L} \quad \text{NOT CONSISTENT} \quad \text{for } y_{\mu}^* = 0 \quad \text{muon mass incorrect} \sim \text{top mass}$$

either Dirac neutrino ...

$$\mathcal{L}_D = -y_{\nu}^{ij} \nu_{R,i} \left(H^c \right)^{\dagger} L_j + \text{H.c.}$$

$$m_{\nu} = \frac{y_{\nu}v_H}{\sqrt{2}}$$

- 10⁻¹³ Yukawa coupling
- Lepton number is conserved

... or Majorana neutrino

e.g. Type 1 see-saw
$$\mathcal{L}_M = \mathcal{L}_D - \frac{1}{2} M_N^{ij} \nu_{R,i} \nu_{R,j} + \text{H.c.}$$
$$m_\nu = \begin{pmatrix} 0 & m_D^T \\ m_D & M_N \end{pmatrix} \qquad m_\nu = y_\nu^2 v_h^2 / (\sqrt{2}M_N)$$

- O(1) Yukawa coupling
- Lepton number is violated

KK, S.Pramanick, E.Sessolo, JHEP 08 (2022) 262

SM + RHN:

1

$$\beta_{\nu} \equiv \frac{ay_{\nu}}{dt} = 0 \quad \rightarrow \quad \text{two IRR solutions for neutrino FP:}$$

1.
$$y_{\nu}^{*2} = \frac{32\pi^2}{5}f_y + \frac{3}{10}g_Y^{*2} - \frac{6}{5}y_t^{*2}$$
 (interactive)

2. $y_{\nu}^* = 0$

(Gaussian)

KK, S.Pramanick, E.Sessolo, JHEP 08 (2022) 262

SM + RHN:

Ja.

$$\begin{aligned} \frac{dg_Y}{dt} &= \frac{g_Y^3}{16\pi^2} \frac{41}{6} - f_g \, g_Y \\ \frac{dy_t}{dt} &= \frac{y_t}{16\pi^2} \left[\frac{9}{2} y_t^2 + y_\nu^2 - \frac{17}{12} g_Y^2 \right] - f_y \, y_t \\ \frac{dy_\nu}{dt} &= \frac{y_\nu}{16\pi^2} \left[3y_t^2 + \frac{5}{2} y_\nu^2 - \frac{3}{4} g_Y^2 \right] - f_y \, y_\nu \end{aligned}$$

$$\implies g_Y^*, y_t^* \sim \mathcal{O}(1)$$

$$\beta_{\nu} \equiv \frac{a y_{\nu}}{dt} = 0 \rightarrow \text{two IRR solutions for neutrino FP:}$$

1.
$$y_{\nu}^{*2} = \frac{32\pi}{5} f_y + \frac{3}{10} g_Y^{*2} - \frac{3}{5} y_t^{*2}$$
 (interactive)

large fine tuning of fy to get small Yukawa

large Yukawa coupling → Majorana neutrino

$$m_\nu = y_\nu^2 v_h^2 / (\sqrt{2}M_N)$$

AS prediction for the Majorana mass

Kamila Kowalska

KK, S.Pramanick, E.Sessolo, JHEP 08 (2022) 262

SM + RHN:

$$\begin{aligned} \frac{dg_Y}{dt} &= \frac{g_Y^3}{16\pi^2} \frac{41}{6} - f_g \, g_Y \\ \frac{dy_t}{dt} &= \frac{y_t}{16\pi^2} \left[\frac{9}{2} y_t^2 + y_\nu^2 - \frac{17}{12} g_Y^2 \right] - f_y \, y_t \\ \frac{dy_\nu}{dt} &= \frac{y_\nu}{16\pi^2} \left[3y_t^2 + \frac{5}{2} y_\nu^2 - \frac{3}{4} g_Y^2 \right] - f_y \, y_\nu \end{aligned}$$

$$\implies g_Y^*, y_t^* \sim \mathcal{O}(1)$$

Kamila Kowalska

Integrated curve in blue :

$$y_{\nu}(t;\kappa) \approx \left(\frac{16\pi^2 f_y}{e^{f_y(\kappa-t)} + 5/2}\right)^{1/2}$$

$$\kappa = \text{``distance'' in e-folds}$$

No fine tuning:

Smallness of the neutrino Yukawa due to the "distance" of the Planck scale from infinity

Neutrinos can be Dirac naturally

Alternative to the see-saw mechanism

The mechanism is more generic...

In pairs of Yukawa interactions one can use the "large" YL to drive down the "small" Ys...

$$\mathcal{L} \supset Y_S \chi_R \Phi \chi_L + Y_L \psi_R \Phi \psi_L + \text{H.c.}$$

10Recall that... g_D $\frac{dy_X}{dt} = \frac{y_X}{16\pi^2} \left[\alpha_X y_X^2 + \alpha_Z y_Z^2 - \alpha_Y g_Y^2 \right] - f_y y_X$ 0.1 $\frac{dy_Z}{dt} = \frac{y_Z}{16\pi^2} \left[\alpha'_X y_X^2 + \alpha'_Z y_Z^2 - \alpha'_Y g_Y^2 \right] - f_y y_Z$ 0.001 10^{-5} ... thus we want ... 10^{-7} $f_{Z,XY}^{\text{crit}} = \frac{g_Y^{*2}}{16\pi^2} \frac{\alpha'_X \alpha_Y - \alpha'_Y \alpha_X}{\alpha_Y - \alpha'_Y} > f_y \text{ (from UV)}$ 10^{-9} 200 400 600 800 1000Log[k/GeV]

... it happens often (but not always) if $Q_{\psi} \gg Q_{\chi}$ (gauge charge)

Can use it to justify freeze-in, feebly interacting models, etc...

Connections to FRG

A. Chikkaballi, KK, E. Sessolo, 2308.06114

Kamila Kowalska

National Centre for Nuclear Research, Warsaw

 $g_X (10^{5,7,9} \, \text{GeV})$

0.29, 0.29, 0.30

0.40, 0.41, 0.44

0.12, 0.12, 0.12

0.09, 0.09, 0.09

Δ

A. Chikkaballi, KK, R. Lino dos Santos, E. Sessolo, work in progress

Motivation: stability of the dark matter particle

SU(N) dark matter: stabilizing Z₂ added "by hand" ex. E. Ma, Phys. Rev. D 103, 051704 (2021)

ex. SU(6) minimal anomaly free setup: $15_Q, \bar{6}_D, \bar{6}_P$ SM dark sector $\bar{6}_P = \bar{5}_P + 1_P$

DM

$$\begin{split} \mathcal{L} \supset Y_D \mathbf{15}_Q \bar{\mathbf{6}}_D \bar{\mathbf{6}}_{H_1} + Y_{\text{mix}} \mathbf{15}_Q \bar{\mathbf{6}}_P \bar{\mathbf{6}}_{H_1} + Y'_D \mathbf{15}_Q \bar{\mathbf{6}}_D \bar{\mathbf{6}}_{H_3} + Y'_{\text{mix}} \mathbf{15}_Q \bar{\mathbf{6}}_P \bar{\mathbf{6}}_{H_3} \\ &+ Y_U \mathbf{15}_Q \mathbf{15}_Q \mathbf{15}_{H_2} + Y_1 \, \bar{\mathbf{6}}_D \bar{\mathbf{6}}_D \mathbf{15}_{H_2} + Y_2 \, \bar{\mathbf{6}}_P \bar{\mathbf{6}}_P \mathbf{15}_{H_2} + Y_{12} \, \bar{\mathbf{6}}_D \bar{\mathbf{6}}_P \mathbf{15}_{H_2} \\ &+ Y_3 \, \bar{\mathbf{6}}_D \bar{\mathbf{6}}_D \mathbf{21}_{H_4} + Y_4 \, \bar{\mathbf{6}}_P \bar{\mathbf{6}}_P \mathbf{21}_{H_4} + Y_{34} \, \bar{\mathbf{6}}_D \bar{\mathbf{6}}_P \mathbf{21}_{H_4} + \text{H.c.} \end{split}$$

A. Chikkaballi, KK, R. Lino dos Santos, E. Sessolo, work in progress

Motivation: stability of the dark matter particle

SU(N) dark matter: stabilizing Z₂ added "by hand" ex. E. Ma, Phys. Rev. D 103, 051704 (2021)

ex. SU(6) minimal anomaly free setup: $15_Q, \bar{6}_D, \bar{6}_P$ SM dark sector $\bar{6}_P = \bar{5}_P + 1_P$ DM

$$\mathcal{L} \supset Y_D \mathbf{15}_Q \bar{\mathbf{6}}_D \bar{\mathbf{6}}_{H_1} + Y_{\text{mix}} \mathbf{15}_Q \bar{\mathbf{6}}_P \bar{\mathbf{6}}_{H_1} + Y'_D \mathbf{15}_Q \bar{\mathbf{6}}_D \bar{\mathbf{6}}_{H_3} + Y'_{\text{mix}} \mathbf{15}_Q \bar{\mathbf{6}}_P \bar{\mathbf{6}}_{H_3} + Y_U \mathbf{15}_Q \mathbf{15}_Q \mathbf{15}_{H_2} + Y_1 \bar{\mathbf{6}}_D \bar{\mathbf{6}}_D \mathbf{15}_{H_2} + Y_2 \bar{\mathbf{6}}_P \bar{\mathbf{6}}_P \mathbf{15}_{H_2} + Y_{12} \bar{\mathbf{6}}_D \bar{\mathbf{6}}_P \mathbf{15}_{H_2} + Y_3 \bar{\mathbf{6}}_D \bar{\mathbf{6}}_D \mathbf{21}_{H_4} + Y_4 \bar{\mathbf{6}}_P \bar{\mathbf{6}}_P \mathbf{21}_{H_4} + Y_{34} \bar{\mathbf{6}}_D \bar{\mathbf{6}}_P \mathbf{21}_{H_4} + \text{H.c.}$$

Z2 symmetry forbids the dark-SM mixing Y1 small to forbid decay $DM \to h\,\nu_L$

A. Chikkaballi, KK, R. Lino dos Santos, E. Sessolo, work in progress

Motivation: stability of the dark matter particle

SU(N) dark matter: stabilizing Z₂ added "by hand" ex. E. Ma, Phys. Rev. D 103, 051704 (2021)

ex. SU(6) minimal anomaly free setup: $15_Q, \bar{6}_D, \bar{6}_P$ SM dark sector $\bar{6}_P = \bar{5}_P + 1_P$ DM

$$\mathcal{L} \supset Y_D \mathbf{15}_Q \bar{\mathbf{6}}_D \bar{\mathbf{6}}_{H_1} + Y_{\text{mix}} \mathbf{15}_Q \bar{\mathbf{6}}_P \bar{\mathbf{6}}_{H_1} + Y'_D \mathbf{15}_Q \bar{\mathbf{6}}_D \bar{\mathbf{6}}_{H_3} + Y'_{\text{mix}} \mathbf{15}_Q \bar{\mathbf{6}}_P \bar{\mathbf{6}}_{H_3} + Y_U \mathbf{15}_Q \mathbf{15}_Q \mathbf{15}_{H_2} + Y_1 \bar{\mathbf{6}}_D \bar{\mathbf{6}}_D \mathbf{15}_{H_2} + Y_2 \bar{\mathbf{6}}_P \bar{\mathbf{6}}_P \mathbf{15}_{H_2} + Y_{12} \bar{\mathbf{6}}_D \bar{\mathbf{6}}_P \mathbf{15}_{H_2} + Y_3 \bar{\mathbf{6}}_D \bar{\mathbf{6}}_D \mathbf{21}_{H_4} + Y_4 \bar{\mathbf{6}}_P \bar{\mathbf{6}}_P \mathbf{21}_{H_4} + Y_{34} \bar{\mathbf{6}}_P \bar{\mathbf{6}}_P \mathbf{21}_{H_4} + \text{H.c.}$$

 $g_{6}^{*}=0\left(\mathrm{R}
ight)~~\mathrm{compatibile}$ with AF

 $Y_D^{'*} = 0$ (IR), $Y_{mix}^* = 0$ (IR) no SM-dark mixing in the quark sector

 $Y_{12}^{*} = 0 (\mathrm{IR}), \, Y_{34}^{*} = 0 (\mathrm{IR}) \,$ no SM-dark mixing in the neutrino sector

 $Y_{1}^{*}=0\,(\mathrm{IR})\,$ no decay into the SM neutrino

STABLE DM

Kamila Kowalska

A. Chikkaballi, KK, R. Lino dos Santos, E. Sessolo, preliminary

Conclusions

- ASQG-inspired boundary conditions allow for specific predictions for the BSM physics.
- The bottleneck of the heuristic approach: UV interactive FPs for the SM couplig(s).
- In the realizations pertinent to naturalness, AF of the SM gauge couplings can be accommodated.
- Question for the future: can the identified mechanisms be applied in different settings (ex. slow-walk instead of a fixed point).