Baryon number and other global symmetries in field theories of quantum gravity

Quantum Spacetime and the Renormalisation Group Heidelberg, Germany — Tuesday 1st April 2025

Shouryya Ray University of the Faroe Islands, Tórshavn

Symmetries ...

... are an impotant part of fundamental theories (physics)

Allows one to organise 'zoo' of particles (excitations) into multiplets
 elementary particles
 composite particles
 quasiparticles

q = -1 q = 0

Symmetries ...

... are an impotant part of fundamental theories (physics)

Allows one to organise 'zoo' of particles (excitations) into multiplets
 elementary particles
 composite particles
 quasiparticles

• Determines selection rules, forbids certain processes \Rightarrow stability

Symmetries ...

... are an impotant part of fundamental theories (physics)

Allows one to organise 'zoo' of particles (excitations) into multiplets
 elementary particles
 composite particles
 quasiparticles

- Determines selection rules, forbids certain processes \Rightarrow stability
- (Folk) theorem: In quantum gravity, any continuous symmetry must be gauge Banks/Dixon '88; Giddings/Strominger '88; Kallosh *et al.* '95; Arkani-Hamed *et al.* '07; Banks/Seiberg '11; Harlow/Ooguri 19, 21; ...

(Folk) theorem: In quantum gravity, any continuous symmetry must be gauge Problem?

• ...most fundamental symmetries are gauged in nature e.g., charge conservation \leftrightarrow U(1) SM: U(1) \times SU(2) \times SU(3) is gauged

...global symmetries can be approximate (and still useful) symmetry-violating processes suppressed, particles relatively stable

(Folk) theorem: In quantum gravity, any continuous symmetry must be gauge Problem?

• ... most fundamental symmetries are gauged in nature e.g., charge conservation \leftrightarrow U(1) SM: U(1) × SU(2) × SU(3) is gauged

...global symmetries can be approximate (and still useful) symmetry-violating processes suppressed, particles relatively stable

Q: Are there any continuous global symmetries where QG-induced breaking leads to a particle being (observably) unstable?

(Folk) theorem: In quantum gravity, any continuous symmetry must be gauge Problem?

• ... most fundamental symmetries are gauged in nature e.g., charge conservation \leftrightarrow U(1) SM: U(1) \times SU(2) \times SU(3) is gauged

...global symmetries can be approximate (and still useful) symmetry-violating processes suppressed, particles relatively stable

Q: Are there any continuous global symmetries where QG-induced breaking leads to a particle being (observably) unstable?

Decay rate suppressed by powers of Planck mass
 ⇒ particle has to come with strong experimental lower bounds on lifetime

(Folk) theorem: In quantum gravity, any continuous symmetry must be gauge Problem?

• ... most fundamental symmetries are gauged in nature e.g., charge conservation \leftrightarrow U(1) SM: U(1) \times SU(2) \times SU(3) is gauged

...global symmetries can be approximate (and still useful) symmetry-violating processes suppressed, particles relatively stable

Q: Are there any continuous global symmetries where QG-induced breaking leads to a particle being (observably) unstable?

- Decay rate suppressed by powers of Planck mass
 ⇒ particle has to come with strong experimental lower bounds on lifetime
- Example: proton decay $p^+
 ightarrow \pi^0 e^+ \gamma \gamma$
 - \Rightarrow forbidden by baryon number conservation, symmetry $U(1)_{\text{B}}$ only global \Rightarrow potential candidate

Proton decay in numbers

... is known to be a very rare process, if possible at all

• Experimental non-observation leads to lower bounds for proton lifetime τ_p

Proton decay in numbers

... is known to be a very rare process, if possible at all

- Experimental non-observation leads to lower bounds for proton lifetime τ_p
- Current estimate: $au_p\gtrsim 10^{34}\,{
 m yrs}$ Super-Kamiokande '17

Proton stability ...

... has already been a (serious) constraint on other deep-UV physics, e.g., GUTs

cf., e.g., Manohar '18

$$\tau_p \approx 16\pi M_p^{-1} \left(G_{4\mathsf{F}}^{qqql}(k = M_p) \right)^{-2}$$

$$\mathsf{dim'less}$$

$$G_{4\mathsf{F}}(k) = \bar{G}_{4\mathsf{F}}(k)k^2$$

$$\tau_p \sim G_{\rm 4F}^{qqql}(M_X) \frac{M_X^4}{M_p^5}$$

Remarks:

- IR measurement ($M_p \approx 1 \, {
 m GeV}$) constrains deep UV ($M_{
 m exp} pprox 2 imes 10^{16} \, {
 m GeV}$).
- $M_{\text{GUT}} \approx M_{\text{exp}}$ Caveat: $G_{4\text{F}}^{qqql}(M_X) \approx 1$ ('naturalness')
- E.g., room for viable GUTs with $M_X\equiv M_{\rm GUT}\sim M_{\rm exp}$ if $G_{
 m 4F}^{qqql}(M_X)\ll 1$

Proton stability and new physics at high energies...

Proton stability and new physics at high energies...

Proton stability and new physics at high energies...

Proton stability and quantum gravity

Proton stability and quantum gravity

Proton stability and quantum gravity

Folklore: proton decay in gravity

No global (i.e., ungauged) symmetries in quantum gravity

Banks/Dixon '88; Giddings/Strominger '88; Kallosh *et al.* '95; Arkani-Hamed *et al.* '07; Banks/Seiberg '11; Harlow/Ooguri 19, 21; ...

• ... baryon number being one of them!

Folklore: proton decay in gravity

No global (i.e., ungauged) symmetries in quantum gravity

Banks/Dixon '88; Giddings/Strominger '88; Kallosh *et al.* '95; Arkani-Hamed *et al.* '07; Banks/Seiberg '11; Harlow/Ooguri 19, 21; ...

- ... baryon number being one of them!
- Heuristic picture: virtual black holes adapted from: Barrow '87; Alsaleh et al. '17

estimated proton lifetime: Zel'dovich '76; Adams et al. '01; ...

$$au_p \sim M_p^{-1} \left(rac{M_{
m QG}}{M_p}
ight)^4 \sim 10^{45} \ {
m yrs} imes \left(rac{M_{
m QG}}{M_{
m Pl}}
ight)^4$$

(*) Effectively assuming $G_{
m 4F}^{qqql}(M_{
m QG}) \sim 1$

Folklore: proton decay in gravity

No global (i.e., ungauged) symmetries in quantum gravity

Banks/Dixon '88; Giddings/Strominger '88; Kallosh *et al.* '95; Arkani-Hamed *et al.* '07; Banks/Seiberg '11; Harlow/Ooguri 19, 21; ...

- ... baryon number being one of them!
- Heuristic picture: virtual black holes adapted from: Barrow '87; Alsaleh et al. '17

estimated proton lifetime: Zel'dovich '76; Adams et al. '01; ...

$$au_p \sim M_p^{-1} \left(rac{M_{
m QG}}{M_p}
ight)^4 \sim 10^{45} \ {
m yrs} imes \left(rac{M_{
m QG}}{M_{
m Pl}}
ight)^4$$

(*) Effectively assuming $G^{qqql}_{
m 4F}(M_{
m QG}) \sim 1$

• Here: Explicitly test validity of (*) within Asymptotically Safe Quantum Gravity (ASQG)

Key assumption:

* Toy model for QFT(SM + metric):

$$\begin{split} S &= S_{\rm EH} + S_{\rm kin,F} + S_{\rm 4F} \\ S_{\rm EH} &= \frac{1}{16\pi G_{\rm N}} \int_x \sqrt{g} (-R + 2\Lambda_{\rm cc}) \\ S_{\rm kin,F} &= \int_x \sqrt{g} \bar{\psi} \mathrm{i} \nabla \psi \\ S_{\rm 4F} &= \bar{G}_{\rm 4F}^{ABCD} \int_x \sqrt{g} \Psi_A \Psi_B \Psi_C \Psi_D \qquad \Psi = \begin{pmatrix} \psi \\ \psi^c \end{pmatrix} \end{split}$$

* Toy model for QFT(SM + metric):

$$\begin{split} S &= S_{\rm EH} + S_{\rm kin,F} + S_{\rm 4F} \\ S_{\rm EH} &= \frac{1}{16\pi G_{\rm N}} \int_x \sqrt{g} (-R + 2\Lambda_{\rm cc}) \\ S_{\rm kin,F} &= \int_x \sqrt{g} \bar{\psi} \mathrm{i} \nabla \psi \\ S_{\rm 4F} &= \bar{G}_{\rm 4F}^{ABCD} \int_x \sqrt{g} \Psi_A \Psi_B \Psi_C \Psi_D \qquad \Psi = \begin{pmatrix} \psi \\ \psi^c \end{pmatrix} \end{split}$$

* ψ : contains all SM fermions Ψ = Nambu–Gor'kov spinor

...Dirac fermions, right-handed neutrinos included; SU(2)_L gauge coupling asymptotically free in ASQG

* split
$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu}$$

 $\label{eq:constraint} \begin{array}{l} \dots \text{ in general: eigenvalues of } -\Delta_{\tilde{\mathcal{S}}} \text{ defines notion of scale} \\ \dots \text{ often in practice (i.e., here): } \\ \tilde{g}_{\mu\nu} \to \delta_{\mu\nu} \Longrightarrow \\ \text{ momentum is} \\ \text{ 'good quantum number' after all } \dots \end{array}$

(Pure) gravity sector

$$\begin{split} S &= S_{\rm EH} + S_{\rm kin,F} + S_{\rm 4F} \\ S_{\rm EH} &= \frac{1}{16\pi G_{\rm N}} \int_x \sqrt{g} (-R + 2\Lambda_{\rm cc}) \\ S_{\rm kin,F} &= \int_x \sqrt{g} \bar{\psi} i \nabla \psi \\ S_{\rm 4F} &= \bar{G}_{\rm 4F}^{ABCD} \int_x \sqrt{g} \Psi_A \Psi_B \Psi_C \Psi_D \qquad \Psi = \begin{pmatrix} \psi \\ \psi^c \end{pmatrix} \end{split}$$

- Fluctuations $h_{\mu\nu}$ decompose into spin-2, 1, and 0 parts
- Landau–DeWitt gauge: only transverse traceless $h_{\mu\nu}^{\perp}$ and conformal $h = h_{\mu}^{\mu}$ modes propagate

$$\frac{h_{\mu\nu}^{\perp}}{p^2 - 2\Lambda_{\rm cc}} = \frac{32\pi G_{\rm N}}{p^2 - 2\Lambda_{\rm cc}} (\delta^{\rho}_{\mu}\delta^{\sigma}_{\nu} + \dots)$$
$$\frac{h}{p^2 - 2\Lambda_{\rm cc}} = \frac{32\pi G_{\rm N}}{-\frac{3}{8}p^2 + \frac{1}{2}\Lambda_{\rm cc}}$$

Remark: (Pure) gravity sector – renormalisation

• Obs.! $[G_N] = 1/(mass)^2$ – 'perturbatively non-renormalizable'

Remark: (Pure) gravity sector – renormalisation

- Obs.! $[G_N] = 1/(mass)^2$ 'perturbatively non-renormalizable'
- Predictivity restored by imposing UV quantum scale symmetry (= Asymptotic Safety; latest reviews: Eichhorn '19; Reichert '19; Bonanno *et al.* '20; Eichhorn/Schiffer '24; ...)

Remark: (Pure) gravity sector – renormalisation

- Obs.! $[G_N] = 1/(mass)^2$ 'perturbatively non-renormalizable'
- Predictivity restored by imposing UV quantum scale symmetry (= Asymptotic Safety; latest reviews: Eichhorn '19; Reichert '19; Bonanno *et al.* '20; Eichhorn/Schiffer '24; ...)

• Use as 'backdrop' for fermions (i.e.: neglect backreaction of fermions on metric)

Fermions

- Propagator has standard form $-----= \frac{p}{n^2}$
- Vertices coupling metric fluctuations with fermions from ∇ and \sqrt{g} ...keep only to $\mathcal{O}((h_{\mu\nu})^2)$

$$S = S_{\rm EH} + S_{\rm kin,F} + S_{\rm 4F}$$

$$S_{\rm EH} = \frac{1}{16\pi G_{\rm N}} \int_x \sqrt{g} (-R + 2\Lambda_{\rm cc})$$

$$S_{\rm kin,F} = \int_x \sqrt{g} \bar{\psi} i \nabla \psi \qquad \Psi = \begin{pmatrix} \psi \\ \psi^c \end{pmatrix}$$

$$S_{\rm 4F} = \bar{G}_{\rm 4F}^{ABCD} \int_x \sqrt{g} \Psi_A \Psi_B \Psi_C \Psi_D$$

• G_{4F}^{ABCD} : Most general 4-Fermi interaction; proton decay ~ G_{4F}^{qqql} cf.: Grzadkowski *et al.* '10 $\mathcal{O}(\bar{G}_{4F}^{ABCD})$

Computational framework

$$\frac{\partial \Gamma_k[\Phi]}{\partial \ln k} = \frac{1}{2} \operatorname{STr} \left[\left(\frac{\delta^2 \Gamma_k[\Phi]}{\delta \Phi \delta \Phi^\top} + R_k[\Phi] \right)^{-1} \frac{\partial R_k[\Phi]}{\partial \ln k} \right] \\ \xrightarrow{\Phi = (h_{dv}^\perp, h, \psi, \overline{\psi}^c)^\top; k - \operatorname{RG scale}; R - \operatorname{regulator}} = \mathbf{O}$$

cf., e.g.: Berges *et al.* Phys. Rep. '02; Metzner *et al.* Rev. Mod. Phys. '12; Dupuis *et al.* Phys. Rept. '21; and refs. therein

Functional renormalization group (FRG), general version

- Γ 1PI effective action aka Legendre effective action, quantum effective action, ...
 - Γ_k average 1PI effective action aka 'blocked' –"-
 - fluctuations above scale k 'integrated out'
- 1-loop exact in principle assuming self-consistent solution loop expansion – start with $\Gamma = S$ plus fixed-point iteration
- Ansatz for Γ_k defines approximation scheme
- Often: expand in canonical dimension (i.e., powers of ψ, h_{μν}, ∂_μ), keep least irrelvant terms justification: 'near perturbative' nature, cf. Codello/Percacci '06; Niedermaier '09, '10; Eichhorn *et al.* '18a,b; ...
Computational framework

$$\frac{\partial \Gamma_{k}[\Phi]}{\partial \ln k} = \frac{1}{2} \operatorname{STr} \left[\left(\frac{\delta^{2} \Gamma_{k}[\Phi]}{\delta \Phi \delta \Phi^{\top}} + R_{k}[\Phi] \right)^{-1} \frac{\partial R_{k}[\Phi]}{\partial \ln k} \right]_{\Phi = (h_{\mu\nu}^{\perp}, h, \psi, \bar{\psi}^{c})^{\top}; k - \operatorname{RG scale}; R - \operatorname{regulator}}$$

cf., e.g.: Berges *et al.* Phys. Rep. '02; Metzner *et al.* Rev. Mod. Phys. '12; Dupuis *et al.* Phys. Rept. '21; and refs. therein

Functional renormalization group (FRG), 'quick and dirty' version

• Ansatz:
$$\Gamma_k = S|_{h_{\mu\nu} \to \sqrt{Z_N} h_{\mu\nu}, G_N \to G_N(k), \Lambda_{cc} \to \Lambda_{cc}(k), \psi \to \sqrt{Z_{\psi}} \psi, G_F \to G_F(k)}$$

- Draw one-loop diagrams with vertices and propagators from before
- Replace couplings and propagators with 'dressed' versions
- Replace momentum integrals with 'threshold functions' diagram with n_F internal fermion lines, n_⊥ spin-2 lines, n_{conf} conformal mode lines ⇒ I<sub>n_F,n_⊥,n_{conf}
 </sub>

e.g.:

$$\int_{p}' \frac{32\pi G_{\rm N}}{-\frac{3}{8}p^{2} + \frac{1}{2}\Lambda_{\rm cc}} \mapsto I_{001} \sim \frac{(-6+\eta_{\rm N})g_{\rm N}}{(3-4\lambda_{\rm cc})^{2}}$$

$$\eta_{\rm N} = -k\partial_{k}\ln Z_{\rm N}, g_{\rm N} = G_{\rm N}k^{2}; \lambda_{\rm cc} = \Lambda_{\rm cc}/k^{2}$$

Diagrammatics

Eichhorn/S.R. Phys. Lett. B '24

• **Result:** N.B.: η_{4F} in fact independent of precise index structure *ABCD* \leftrightarrow 'gravity blind to internal indices'

$$k\partial_k G_{4\mathsf{F}}^{qqql}(k) = (2 + \eta_{4\mathsf{F}}) \, G_{4\mathsf{F}}^{qqql}(k) + \mathcal{O}((G_{4\mathsf{F}}^{qqql})^2)$$

• Explicitly: Litim regulator, Landau-DeWitt gauge, cf. Eichhorn/Gies '11

$$\begin{split} \eta_{4\mathsf{F}} &= 2g_{\mathsf{N}} \left[-\frac{9(2\lambda-3)}{4\pi(3-4\lambda_{\mathsf{cc}})^2} + \frac{6(4\lambda_{\mathsf{cc}}-9)}{5\pi(3-4\lambda_{\mathsf{cc}})^2} + \frac{5}{4\pi(1-\lambda_{\mathsf{cc}})^2} + \frac{3}{2\pi(4\lambda_{\mathsf{cc}}-3)^2} \right] \\ &= \frac{29g_{\mathsf{N}}}{15\pi} + \frac{32g_{\mathsf{N}}\lambda_{\mathsf{cc}}}{9\pi} + \mathcal{O}(\lambda_{\mathsf{cc}}^2) \end{split}$$

Discussion I: General

Eichhorn/S.R. Phys. Lett. B '24

$$k\partial_k G_{4\mathsf{F}}^{qqql}(k) = (2 + \eta_{4\mathsf{F}}) \, G_{4\mathsf{F}}^{qqql}(k) + \mathcal{O}((G_{4\mathsf{F}}^{qqql})^2)$$

• Generally: $\eta_{4F} > 0$...assuming $\lambda_{cc} > -9$ (pheno. relevant) 'metric fluctuations suppress proton decay'

• hence *a fortiori*:
$$2 + \eta_{4F} > 0$$

⇒ naïvely 'unnatural' $G_{4F}^{qqql}(M_{QG}) \ll 1$ is actually 'natural' if QFT(SM + metric) holds at $M_{QG} < k < k_{UV}$ for k_{UV} large enough

N.B.: *Much* milder assumption than (eff.) AS! Caveats/assumptions:

* Einstein–Hilbert truncation should remain good approximation

* B -violation from UV completion is (at most) 'natural': $G_{\rm 4F}^{qqql}(k_{\rm UV})\sim 1$

Discussion II: AS and effective AS

Eichhorn/S.R. Phys. Lett. B '24

• Assumption: Running of g_N , λ_{cc} negligible for $M_{QG} < k < k_{UV}$ (= quasi-FP regime)

Discussion II: AS and effective AS

Eichhorn/S.R. Phys. Lett. B'24

• Assumption: Running of $g_{\rm N}$, $\lambda_{\rm cc}$ negligible for $M_{\rm QG} < k < k_{\rm UV}$ (= quasi-FP regime)

Discussion II: AS and effective AS

Eichhorn/S.R. Phys. Lett. B '24

Integrated flow:

۲

• Assumption: Running of g_N , λ_{cc} negligible for $M_{QG} < k < k_{UV}$ (= quasi-FP regime)

Eichhorn/S.R. Phys. Lett. B '24

• Consider GUT with simple gauge group, coupling g_{GUT}

Eichhorn/S.R. Phys. Lett. B '24

- Consider GUT with simple gauge group, coupling gGUT
- Mixing of quarks and leptons \implies GUT gauge fluctuations induce G_{4F}^{qqql}

 $k\partial_k G_{4\mathsf{F}}^{qqql} = 2G_{4\mathsf{F}}^{qqql} + C_0 g_{\mathrm{GUT}}^4$

Eichhorn/S.R. Phys. Lett. B'24

- Consider GUT with simple gauge group, coupling g_{GUT}
- Mixing of quarks and leptons \implies GUT gauge fluctuations induce G_{4F}^{qqql}

$$k\partial_k G^{qqql}_{4\mathsf{F}} = 2G^{qqql}_{4\mathsf{F}} + C_0 g^4_{\mathrm{GUT}}$$

• Assume $k\partial_k g_{\text{GUT}} = b_0 g_{\text{GUT}}^3$ $b_0 > 0$

Eichhorn/S.R. Phys. Lett. B'24

- Consider GUT with simple gauge group, coupling g_{GUT}
- Mixing of quarks and leptons \implies GUT gauge fluctuations induce G_{4F}^{qqql}

$$k\partial_k G_{4\mathsf{F}}^{qqql} = 2G_{4\mathsf{F}}^{qqql} + C_0 g_{\mathrm{GUT}}^4$$

- Assume $k\partial_k g_{\text{GUT}} = b_0 g_{\text{GUT}}^3$ $b_0 > 0$
- Problematic: Landau pole, large proton decay rate

Eichhorn/S.R. Phys. Lett. B '24

- Consider GUT with simple gauge group, coupling g_{GUT}
- Mixing of quarks and leptons \implies GUT gauge fluctuations induce G_{4F}^{qqql}

 $k\partial_k G_{4\mathsf{F}}^{qqql} = 2G_{4\mathsf{F}}^{qqql} + C_0 g_{\mathrm{GUT}}^4$

- Assume $k\partial_k g_{\text{GUT}} = b_0 g_{\text{GUT}}^3$ $b_0 > 0$
- Problematic: Landau pole, large proton decay rate
- Idea: Couple to ASQG, modifies β functions, allows UV completion more generally for any 'non-abelian QED' de Brito/Eichhorn/S.R. *arXiv:2311.16066*

- Consider GUT with simple gauge group, coupling g_{GUT}
- Mixing of quarks and leptons \implies GUT gauge fluctuations induce G_{4F}^{qqql}

 $k\partial_k G_{4\mathsf{F}}^{qqql} = 2G_{4\mathsf{F}}^{qqql} + C_0 g_{\mathsf{GUT}}^4 + \eta_{4\mathsf{F}}(g_{\mathsf{N}}, \lambda_{\mathsf{cc}}) + C_1 g_{\mathsf{N}} g_{\mathsf{GUT}}^2$

- Assume $k\partial_k g_{\text{GUT}} = -f_g(g_N, \lambda_{\text{cc}})g_{\text{GUT}} + b_0 g_{\text{GUT}}^3$ $b_0 > 0$, $f_g > 0$
- Problematic: Landau pole, large proton decay rate
- Idea: Couple to ASQG, modifies β functions, allows UV completion more generally for any 'non-abelian QED' de Brito/Eichhorn/S.R. *arXiv:2311.16066*

- Consider GUT with simple gauge group, coupling g_{GUT}
- Mixing of quarks and leptons \implies GUT gauge fluctuations induce G_{4F}^{qqql}

 $k\partial_k G_{4\mathsf{F}}^{qqql} = 2G_{4\mathsf{F}}^{qqql} + C_0 g_{\mathsf{GUT}}^4 + \eta_{4\mathsf{F}}(g_{\mathsf{N}}, \lambda_{\mathsf{cc}}) + C_1 g_{\mathsf{N}} g_{\mathsf{GUT}}^2$

- Assume $k\partial_k g_{\rm GUT} = -f_g(g_{\rm N},\lambda_{\rm cc})g_{\rm GUT} + b_0 g_{\rm GUT}^3$ $b_0>0$, $f_g>0$
- Problematic: Landau pole, large proton decay rate
- Idea: Couple to ASQG, modifies β functions, allows UV completion more generally for any 'non-abelian QED' de Brito/Eichhorn/S.R. *arXiv:2311.16066*
- UV scale symmetry \implies upper bound on $g_{GUT}(k = M_{QG})$ and $G_{4F}^{qqql}(k = M_{QG})$ \implies Coupling to ASQG generates upper bound on decay rate

- Consider GUT with simple gauge group, coupling g_{GUT}
- Mixing of quarks and leptons \implies GUT gauge fluctuations induce G_{4F}^{qqql}

 $k\partial_k G_{4\mathsf{F}}^{qqql} = 2G_{4\mathsf{F}}^{qqql} + C_0 g_{\mathsf{GUT}}^4 + \eta_{4\mathsf{F}}(g_{\mathsf{N}}, \lambda_{\mathsf{cc}}) + C_1 g_{\mathsf{N}} g_{\mathsf{GUT}}^2$

- Assume $k\partial_k g_{\rm GUT} = -f_g(g_{\rm N},\lambda_{\rm cc})g_{\rm GUT} + b_0 g_{\rm GUT}^3$ $b_0>0$, $f_g>0$
- Problematic: Landau pole, large proton decay rate
- Idea: Couple to ASQG, modifies β functions, allows UV completion more generally for any 'non-abelian QED' de Brito/Eichhorn/S.R. *arXiv:2311.16066*
- UV scale symmetry \implies upper bound on $g_{GUT}(k = M_{QG})$ and $G_{4F}^{qqql}(k = M_{QG})$ \implies Coupling to ASQG generates upper bound on decay rate (!)

- Consider GUT with simple gauge group, coupling g_{GUT}
- Mixing of quarks and leptons \implies GUT gauge fluctuations induce G_{4F}^{qqql}

 $k\partial_k G_{4\mathsf{F}}^{qqql} = 2G_{4\mathsf{F}}^{qqql} + C_0 g_{\mathsf{GUT}}^4 + \eta_{4\mathsf{F}}(g_{\mathsf{N}}, \lambda_{\mathsf{cc}}) + C_1 g_{\mathsf{N}} g_{\mathsf{GUT}}^2$

- Assume $k\partial_k g_{\rm GUT} = -f_g(g_{\rm N},\lambda_{\rm cc})g_{\rm GUT} + b_0 g_{\rm GUT}^3$ $b_0>0$, $f_g>0$
- Problematic: Landau pole, large proton decay rate
- Idea: Couple to ASQG, modifies β functions, allows UV completion more generally for any 'non-abelian QED' de Brito/Eichhorn/S.R. *arXiv:2311.16066*
- UV scale symmetry \implies upper bound on $g_{GUT}(k = M_{QG})$ and $G_{4F}^{qqql}(k = M_{QG})$ \implies Coupling to ASQG generates upper bound on decay rate (!)
- Typical numbers for C's and $f's^2 \implies \left|G_{4\mathsf{F},*}^{qqql}\right|^2 \lesssim 10^{-7}$

²Eichhorn/Held/Wetterich '18

Discussion IV: *B*-symmetry in ASQG

Eichhorn/S.R. Phys. Lett. B '24

- Corollary (strict AS limit): $k_{\sf UV} o \infty \implies G_{\sf 4F}^{qqql}(M_{\sf QG}) o 0$
- In FP language: $G^{qqql}_{4F,*} = 0$ and $G^{qqql}_{4F} \neq 0$ is irrelevant perturbation

Discussion IV: *B*-symmetry in ASQG

Eichhorn/S.R. Phys. Lett. B '24

- Corollary (strict AS limit): $k_{\sf UV} o \infty \implies G_{\sf 4F}^{qqql}(M_{\sf QG}) o 0$
- In FP language: $G_{4F,*}^{qqql} = 0$ and $G_{4F}^{qqql} \neq 0$ is irrelevant perturbation $\downarrow \downarrow$ ASQG = *B*-conserving UV completion of GR

Discussion IV: *B*-symmetry in ASQG

Eichhorn/S.R. Phys. Lett. B '24

• $G_{4F,*}^{qqql} = 0 \Rightarrow ASQG = B$ -conserving UV completion of GR

ightarrow Truncation-independent 'proof': Use Quantum Action Principle for regularized effective action Γ_k

$$e^{-\Gamma_{k}[\Phi]} = \int \mathcal{D}\tilde{\Phi} e^{-S[\Phi] + (\tilde{\Phi}_{X} - \Phi_{X})\Gamma_{k,}^{X}[\Phi] - \frac{1}{2}\mathcal{R}_{k}^{XY}(\tilde{\Phi}_{X} - \Phi_{X})(\tilde{\Phi}_{Y} - \Phi_{Y})}$$

$$\delta_{\epsilon}\Gamma_{k}[\Phi] = \left\langle \delta_{\epsilon} \left(S[\tilde{\Phi}] - (\tilde{\Phi}_{X} - \Phi_{X})\Gamma_{k,}^{X}[\Phi] + \frac{1}{2}\mathcal{R}_{k}^{XY}(\tilde{\Phi}_{X} - \Phi_{X})(\tilde{\Phi}_{Y} - \Phi_{Y}) \right) \right\rangle_{k;\Phi}$$

with

$$\left\langle \mathcal{F}[\tilde{\Phi}] \right\rangle_{k;\Phi} \coloneqq e^{\Gamma_{k}[\Phi]} \int \mathcal{D}\tilde{\Phi} e^{-\mathcal{S}[\Phi] + (\tilde{\Phi}_{X} - \Phi_{X})\Gamma_{k,X}^{-1}[\Phi] - \frac{1}{2}\mathcal{R}_{k}^{XY}(\tilde{\Phi}_{X} - \Phi_{X})(\tilde{\Phi}_{Y} - \Phi_{Y})} \mathcal{F}[\tilde{\Phi}]$$

Ward–Takahashi identity for *B*-symmetry

N.B.: Assuming reg. preserves B-symmetry, manifest for Dirac fermions (more tricky for Weyl!)

$$\delta_{\epsilon}S = 0 \implies \delta_{\epsilon}\Gamma_k = 0$$

B-symmetry in ASQG vs QG folklore

Ward–Takahashi identity for *B*-symmetry

N.B.: Assuming reg. preserves B-symmetry, manifest for Dirac fermions (more tricky for Weyl!)

$$\delta_{\epsilon}S = 0 \implies \delta_{\epsilon}\Gamma_k = 0$$

α

• Assumptions that generically lead to *B*-violation may not be valid in ASQG, many open questions

e.g., what do ASQG black holes 'look like'? How about their dynamics? → difficult from first principles – see however Pawlowski/Tränkle '24; usually based on 'RG improvement' of classical solutions Bonanno/Reuter '99, '00, '06; Reuter/Weyer '04; Cai/Easson '10; Liu *et al.* '12; Falls *et al.* '12; Falls/Litim '14; Koch/Saueressig '13, '14; Saueressig *et al.* '15; González/Koch '16; Torres '17; Adéìféoba *et al.* '18; Held *et al.* '19; Bosma *et al.* '19; Platania '20; Bonanno *et al.* '21; Ishibashi *et al.* '21; Borissova/Platania '23; ...

B-symmetry in ASQG vs QG folklore

Ward-Takahashi identity for B-symmetry

N.B.: Assuming reg. preserves B-symmetry, manifest for Dirac fermions (more tricky for Weyl!)

 $\delta_{\epsilon}S = 0 \implies \delta_{\epsilon}\Gamma_k = 0$

• Assumptions that generically lead to *B*-violation may not be valid in ASQG, many open questions

e.g., what do ASQG black holes 'look like'? How about their dynamics? → difficult from first principles – see however Pawlowski/Tränkle '24; usually based on 'RG improvement' of classical solutions Bonanno/Reuter '99, '00, '06; Reuter/Weyer '04; Cai/Easson '10; Liu *et al.* '12; Falls *et al.* '12; Falls/Litim '14; Koch/Saueressig '13, '14; Saueressig *et al.* '15; González/Koch '16; Torres '17; Adéìféoba *et al.* '18; Held *et al.* '19; Bosma *et al.* '19; Platania '20; Bonanno *et al.* '21; Ishibashi *et al.* '21; Borissova/Platania '23; ...

More generally: Horizons 'eat' global charge

 \longrightarrow Now: Can these 'problematic' contribs to gravitational path integral be suppressed by non-minimal curvature terms?

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

Assume gravitational path integral given by $\int Dg e^{iS_{eff}(g)}$.

Can (quasi-)local contribution to Lagrangian $\int_x \mathcal{L}_{hor}(g(x))\mu_g(x) \subset S_{eff}(g)$ $(\mu_g(x) = \sqrt{-\det(g(x))} d^4x)$ be found so that $S_{eff}(g) \to \infty$ if g has horizon? Similar to: Higher-order curvature terms in $S_{eff} \Rightarrow S_{eff}$ divergent for (many) types of g with curvature singularities cf. Borissova/Eichhorn '21, Borissova '24

Claim:

$$\mathcal{L}_{\mathrm{hor}} = \frac{(C^2)^8}{[4C^2(\nabla C)^2 - (\nabla C^2)^2]^2} \qquad C - \text{Weyl tensor w.r.t.}\, g$$

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

Assume gravitational path integral given by $\int Dg e^{iS_{eff}(g)}$.

Can (quasi-)local contribution to Lagrangian $\int_x \mathcal{L}_{hor}(g(x))\mu_g(x) \subset S_{eff}(g)$ $(\mu_g(x) = \sqrt{-\det(g(x))} d^4x)$ be found so that $S_{eff}(g) \to \infty$ if g has horizon? Similar to: Higher-order curvature terms in $S_{eff} \Rightarrow S_{eff}$ divergent for (many) types of g with curvature singularities cf. Borissova/Eichhorn '21, Borissova '24

Claim:

$$\mathcal{L}_{\mathrm{hor}} = \frac{(C^2)^8}{[4C^2(\nabla C)^2 - (\nabla C^2)^2]^2} \qquad \text{C-Weyl tensor w.r.t.}\, g$$

1. Is positive everywhere, $\mathcal{L}_{hor}(g(x)) > 0$ for all x

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

Assume gravitational path integral given by $\int Dg e^{iS_{eff}(g)}$.

Can (quasi-)local contribution to Lagrangian $\int_x \mathcal{L}_{hor}(g(x))\mu_g(x) \subset S_{eff}(g)$ $(\mu_g(x) = \sqrt{-\det(g(x))} d^4x)$ be found so that $S_{eff}(g) \to \infty$ if g has horizon? Similar to: Higher-order curvature terms in $S_{eff} \Rightarrow S_{eff}$ divergent for (many) types of g with curvature singularities cf. Borissova/Eichhorn '21, Borissova '24

Claim:

$$\mathcal{L}_{\mathrm{hor}} = \frac{(C^2)^8}{[4C^2(\nabla C)^2 - (\nabla C^2)^2]^2} \qquad C - \mathrm{Weyl} \ \mathrm{tensor} \ \mathrm{w.r.t.} \ g$$

1. Is positive everywhere, $\mathcal{L}_{hor}(g(x)) > 0$ for all x

2. $S_{\text{eff}}(g) = \infty$ if g is rotationally symmetric and has (apparent) horizon(!)

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

Assume gravitational path integral given by $\int Dg e^{iS_{eff}(g)}$.

Can (quasi-)local contribution to Lagrangian $\int_x \mathcal{L}_{hor}(g(x))\mu_g(x) \subset S_{eff}(g)$ $(\mu_g(x) = \sqrt{-\det(g(x))} d^4x)$ be found so that $S_{eff}(g) \to \infty$ if g has horizon? Similar to: Higher-order curvature terms in $S_{eff} \Rightarrow S_{eff}$ divergent for (many) types of g with curvature singularities cf. Borissova/Eichhorn '21, Borissova '24

Claim:

$$\mathcal{L}_{\mathrm{hor}} = \frac{(C^2)^8}{[4C^2(\nabla C)^2 - (\nabla C^2)^2]^2} \qquad C - \text{Weyl tensor w.r.t.} \, g$$

- 1. Is positive everywhere, $\mathcal{L}_{hor}(g(x)) > 0$ for all x
- 2. $S_{\text{eff}}(g) = \infty$ if g is rotationally symmetric and has (apparent) horizon(!)
- 3. Can be defined(!) and is not divergent(!) for many 'nice enough' spacetimes

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

Claim:

$$\mathcal{L}_{hor} = \frac{(C^2)^8}{[4C^2(\nabla C)^2 - (\nabla C^2)^2]^2}$$

C — Weyl tensor w.r.t. *g*

Proof:

1. Obvious (square of scalar)

- 1. Is positive everywhere, $\mathcal{L}_{hor}(g(x)) > 0$ for all x
- 2. $S_{\text{eff}}(g) = \infty$ if g is rotationally symmetric and has (apparent) horizon(!)
- 3. Can be defined(!) and not divergent(!) for many 'nice enough' spacetiems

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

Claim:

$$\mathcal{L}_{hor} = \frac{(C^2)^8}{[4C^2(\nabla C)^2 - (\nabla C^2)^2]^2}$$

C — Weyl tensor w.r.t. *g*

Proof:

- 1. Obvious (square of scalar)
- 2. Compute explicitly in coordinates such that Use that $4C^2(\nabla C)^2 - (\nabla C^2)^2$ changes sign with m(v, r) - R(r), cf. Coley/McNutt '18, McNutt *et al.* '21

$$ds^{2} = -e^{2\beta(v,r)} \left(1 - \frac{2m(v,r)}{R(r)}\right) dv^{2} + 2e^{\beta(v,r)} dv \, dr + R(r)^{2} dr^{2} + r^{2} d\Omega^{2}$$

- 1. Is positive everywhere, $\mathcal{L}_{hor}(g(x)) > 0$ for all x
- 2. $S_{\text{eff}}(g) = \infty$ if g is rotationally symmetric and has (apparent) horizon(!)
- 3. Can be defined(!) and not divergent(!) for many 'nice enough' spacetiems

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

Claim:

$$\mathcal{L}_{hor} = \frac{(C^2)^8}{[4C^2(\nabla C)^2 - (\nabla C^2)^2]^2}$$

C — Weyl tensor w.r.t. *g*

Proof:

- 1. Obvious (square of scalar)
- 2. Compute explicitly in coordinates such that Use that $4C^2(\nabla C)^2 - (\nabla C^2)^2$ changes sign with m(v, r) - R(r), cf. Coley/McNutt '18, McNutt *et al.* '21

$$ds^{2} = -e^{2\beta(v,r)} \left(1 - \frac{2m(v,r)}{R(r)}\right) dv^{2} + 2e^{\beta(v,r)} dv \, dr + R(r)^{2} dr^{2} + r^{2} d\Omega^{2}$$

3. Compute explicitly for $ds^2 = -(1 + cr^2)dt^2 + a(t)^2(dr^2 + r^2d\Omega^2)$ Finite for all *c*, vanishes for Weyl-flat $c \to 0$ (flat Minkowski $g = \eta a$ fortiori)

- 1. Is positive everywhere, $\mathcal{L}_{hor}(g(x)) > 0$ for all x
- 2. $S_{\text{eff}}(g) = \infty$ if g is rotationally symmetric and has (apparent) horizon(!)
- 3. Can be defined(!) and not divergent(!) for many 'nice enough' spacetiems

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

$$\mathcal{L}_{hor} = \frac{(C^2)^8}{((4C^2(\nabla C)^2 - (\nabla C^2)^2)^2)^2}$$

Non-local dynamics (not analytic in g and its derivatives)

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

$$\mathcal{L}_{hor} = \frac{(C^2)^8}{((4C^2(\nabla C)^2 - (\nabla C^2)^2)^2)^2}$$

Non-local dynamics (not analytic in g and its derivatives) – how problematic is this?

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

$$\mathcal{L}_{hor} = \frac{(C^2)^8}{((4C^2(\nabla C)^2 - (\nabla C^2)^2)^2)^2}$$

Non-local dynamics (not analytic in g and its derivatives) – how problematic is this? A: May be not too bad:

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

$$\mathcal{L}_{hor} = \frac{(C^2)^8}{((4C^2(\nabla C)^2 - (\nabla C^2)^2)^2)^2}$$

Non-local dynamics (not analytic in g and its derivatives) – how problematic is this? A: May be not too bad:

● More severe non-localities (e.g. □⁻¹) appear in non-local cosmology Deser/Woodward '07, Biswas *et al.* '10, Amendola *et al.* '17

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

$$\mathcal{L}_{hor} = \frac{(C^2)^8}{((4C^2(\nabla C)^2 - (\nabla C^2)^2)^2)^2}$$

Non-local dynamics (not analytic in g and its derivatives) – how problematic is this? A: May be not too bad:

- More severe non-localities (e.g. □⁻¹) appear in non-local cosmology Deser/Woodward '07, Biswas *et al.* '10, Amendola *et al.* '17
- (Mild) non-localities can arise as continuum limits of LQG/spin foams/... Borissova/Dittrich '23, Borissova *et al.* '24 (...but not clear whether they also suppress horizons)

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

$$\mathcal{L}_{hor} = \frac{(C^2)^8}{((4C^2(\nabla C)^2 - (\nabla C^2)^2)^2)^2}$$

Non-local dynamics (not analytic in g and its derivatives) – how problematic is this? A: May be not too bad:

- More severe non-localities (e.g. □⁻¹) appear in non-local cosmology Deser/Woodward '07, Biswas *et al.* '10, Amendola *et al.* '17
- (Mild) non-localities can arise as continuum limits of LQG/spin foams/... Borissova/Dittrich '23, Borissova *et al.* '24 (...but not clear whether they also suppress horizons)
- Certain non-localities (~ $\mathcal{R}\square^{-n}\mathcal{R}$, $\mathcal{R} \in \text{Riem}$, Ric, Scal) lead to divergent black-hole entropies Platania/Redondo-Yuste '24

... can 'bypass' arguments against global symmetry by contradiction with area laws, at cost of giving up thermodynamic interpretation of black-hole entropy – not in effect here!

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

$$\mathcal{L}_{hor} = \frac{(C^2)^8}{((4C^2(\nabla C)^2 - (\nabla C^2)^2)^2)^2}$$

Non-local dynamics (not analytic in g and its derivatives) – how problematic is this? A: May be not too bad:

- More severe non-localities (e.g. □⁻¹) appear in non-local cosmology Deser/Woodward '07, Biswas *et al.* '10, Amendola *et al.* '17
- (Mild) non-localities can arise as continuum limits of LQG/spin foams/... Borissova/Dittrich '23, Borissova *et al.* '24 (...but not clear whether they also suppress horizons)
- Certain non-localities (~ $\mathcal{R}\square^{-n}\mathcal{R}$, $\mathcal{R} \in \text{Riem}$, Ric, Scal) lead to divergent black-hole entropies Platania/Redondo-Yuste '24

... can 'bypass' arguments against global symmetry by contradiction with area laws, at cost of giving up thermodynamic interpretation of black-hole entropy – not in effect here!

• Usual disclaimers (unitarity, stability, ...) apply

Summary and outlook

 ASQG can accomodate B symmetry ⇒ no proton-decay-mediating 4-Fermi operators What happens if we throw a quark into a black hole in ASQG?

Summary and outlook

- ASQG can accomodate *B* symmetry ⇒ no proton-decay-mediating 4-Fermi operators *What happens if we throw a quark into a black hole in ASQG?*
- B-violation is irrelevant perturbation in ASQG
 Further consequences of interplay with GUTs in QG regime?
 Interplay with other 4-Fermi operators (→ SSB, 'competing order' problem)?
Summary and outlook

- ASQG can accomodate *B* symmetry ⇒ no proton-decay-mediating 4-Fermi operators *What happens if we throw a quark into a black hole in ASQG?*
- B-violation is irrelevant perturbation in ASQG
 Further consequences of interplay with GUTs in QG regime?
 Interplay with other 4-Fermi operators (→ SSB, 'competing order' problem)?
- Technical ToDo list: gauge dependence, reg. dependence, extended truncations ...

Summary and outlook

- ASQG can accomodate *B* symmetry ⇒ no proton-decay-mediating 4-Fermi operators *What happens if we throw a quark into a black hole in ASQG?*
- *B*-violation is irrelevant perturbation in ASQG Further consequences of interplay with GUTs in QG regime? Interplay with other 4-Fermi operators (→ SSB, 'competing order' problem)?
- Technical ToDo list: gauge dependence, reg. dependence, extended truncations ...
- Experimental perspective: Proton decay bounds may impinge on QG predictions!

Summary and outlook

- ASQG can accomodate *B* symmetry ⇒ no proton-decay-mediating 4-Fermi operators *What happens if we throw a quark into a black hole in ASQG?*
- *B*-violation is irrelevant perturbation in ASQG Further consequences of interplay with GUTs in QG regime? Interplay with other 4-Fermi operators (→ SSB, 'competing order' problem)?
- Technical ToDo list: gauge dependence, reg. dependence, extended truncations ...
- Experimental perspective: Proton decay bounds may impinge on QG predictions!

 Horizons (i.e. those that 'eat' global charge) may potentially be suppressed in path integrals using actions that are only mildly non-local Unified construction for general horizons? Wormholes/topology change? Black-hole entropy? Derivation from more fundamental (e.g., discrete) approach or integrating out DOFs?

Acknowledgement

Based on:

Phys. Lett. B **850**, 138529 (2024) (w/ A. Eichhorn) *Class. Quantum Grav.* **42**, 037001 (2025) (w/ J. Borissova & A. Eichhorn)

Collaborators

Astrid Eichhorn ITP Heidelberg

Funding

Grant No. RA3854/1-1

Johanna Borissova Pl, Waterloo

*

Grant No. 29405

VILLUM FONDEN

Acknowledgement

Based on:

Phys. Lett. B **850**, 138529 (2024) (w/ A. Eichhorn) *Class. Quantum Grav.* **42**, 037001 (2025) (w/ J. Borissova & A. Eichhorn)

Collaborators

Astrid Eichhorn ITP Heidelberg

Funding

Grant No. RA3854/1-1

Johanna Borissova Pl, Waterloo

VILLUM FONDEN

 \gg

Thank you!

Grant No. 29405