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Symmetries ...

...are an impotant part of fundamental theories (physics)
@ Allows one to organise ‘zoo’ of particles (excitations) into multiplets
elementary particles composite particles quasiparticles
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@ Determines selection rules, forbids certain processes = stability



Symmetries ...

...are an impotant part of fundamental theories (physics)

@ Allows one to organise ‘zoo’ of particles (excitations) into multiplets
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@ Determines selection rules, forbids certain processes = stability

@ (Folk) theorem: In quantum gravity, any continuous symmetry must be gauge

Banks/Dixon '88; Giddings/Strominger '88; Kallosh et al. '95; Arkani-Hamed et al. '07; Banks/Seiberg "11;
Harlow/Ooguri 19, 21; ...




Symmetries in quantum gravity

(Folk) theorem: In quantum gravity, any continuous symmetry must be gauge
Problem?
@ ...most fundamental symmetries are gauged in nature

e.g., charge conservation <+ U(1)
SM: U(1) x SU(2) x SU(3) is gauged

...global symmetries can be approximate (and still useful)
symmetry-violating processes suppressed, particles relatively stable
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Symmetries in quantum gravity

(Folk) theorem: In quantum gravity, any continuous symmetry must be gauge
Problem?

@ ...most fundamental symmetries are gauged in nature
e.g., charge conservation <+ U(1)
SM: U(1) x SU(2) x SU(3) is gauged

...global symmetries can be approximate (and still useful)
symmetry-violating processes suppressed, particles relatively stable

Q: Are there any continuous global symmetries where QG-induced breaking leads to a particle
being (observably) unstable?
@ Decay rate suppressed by powers of Planck mass
= particle has to come with strong experimental lower bounds on lifetime
@ Example: proton decay p* — 7%ty

= forbidden by baryon number conservation, symmetry U(1)g only global
= potential candidate



Proton decay in numbers

...is known to be a very rare process, if possible at all
gl

@ Experimental non-observation leads to lower bounds for proton lifetime T,



Proton decay in numbers

...iIs known to be a very rare process, if possible at all

@ Experimental non-observation leads to lower bounds for proton lifetime T,
@ Current estimate: 7, > 103* yrs super-kamiokande 17
P



Proton stability ...

...has already been a (serious) constraint on other deep-UV physics, e.g., GUTs
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From proton lifetime to new-physics scale
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From proton lifetime to new-physics scale

cf., e.g., Manohar 18
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From proton lifetime to new-physics scale

4
MX

1
7, ~ G (M)
MF’

IR w uv
Mp Mexp
~ 1GeV ~ 2 x 10 Gev
Mgut
~ 106 GeV

Remarks:
@ IR measurement (M,, ~ 1 GeV) constrains deep UV (Meyp ~ 2 X 1016 GeV).
@ Mgyt ~ Mexp Caveat: GZ’,’lql(MX) ~ 1 (‘naturalness’)

@ E.g., room for viable GUTs with Mx = Mgyt ~ Mexp if GZqul(MX) <1



Proton stability and new physics at high energies...
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Proton stability and new physics at high energies...

Q: What about quantum gravity?

X — QG
IR * uv
~ 1GeV ~ 2 x 101° GeV
Mgut

~ 1016 GeV




Proton stability and new physics at high energies...

Q: What about quantum gravity?

X — QG
Mpy
~ 1018 GeV
IR W uv
M, Mexp
~ 1GeV ~ 2 x 10! GeV
Mgut

~ 1016 GeV




Proton stability and quantum gravity

Mp,
~ 10'8 GeV

IR # uv
M, Mexp

~ 1GeV ~ 2 x 10! GeV




Proton stability and quantum gravity

mod. running of <_MQG

Newton coupling (e.g.
extra matter d.o.f's)

~ 10'8 GeV
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Proton stability and quantum gravity

mod. running of <—MQG

Newton coupling (e.g

extra matter d.o.f's)

~ 10'8 GeV

|~ 1GeV A~ 2 x 106 GeV|  HyperK JUNO, ...

z
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Folklore: proton decay in gravity

No global (i.e., ungauged) symmetries in quantum gravity
Banks/Dixon '88; Giddings/Strominger '88; Kallosh et al. '95; Arkani-Hamed et al. '07; Banks/Seiberg '11; Harlow/Ooguri 19,
21; ...

@ ...baryon number being one of them!
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Folklore: proton decay in gravity

No global (i.e., ungauged) symmetries in quantum gravity

Banks/Dixon '88; Giddings/Strominger '88; Kallosh et al. '95; Arkani-Hamed et al. '07; Banks/Seiberg '11; Harlow/Ooguri 19,
21; ...

..baryon number being one of them!

@ Heuristic picture: virtual black holes adapted from: Barrow '87; Alsaleh et al. 17

\2 f/ estimated proton lifetime: zeldovich '76; Adams et al. '01;
_ MQG>4 Moc 4
~M;! < 10% yrs x
‘ P\ M, Mgy
/ \ +) Effectively assuming GI1 (Mqg) ~ 1

@ Here: Explicitly test validity of () within Asymptotically Safe Quantum Gravity (ASQG)




Key assumption:

Mp,
~ 10'8 GeV
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M, Mexp
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QFT(SM + metric)
+—/)>
Mp,

~ 10'8 GeV

IR ﬁ uv
M, Mexp

~1GeV ~ 2 x 106 Gev

Key assumption:




foAe FT(SM + metric
Key assumption: .Q ( /_L
Mp,
~ 108 GeV
IR ﬁ uv
M, Mexp
~1GeV ~ 2 x 10'° GeV

* Toy model for QFT(SM + metric):

S = SgH + Skinf + SaF
1
SEH = 167‘CGN /x\/g(—R +2ACC)
SkinF = /x VEPIYY

S G;‘}EBCD/ NANR DT ¥ (V’)
X




P QFT(SM + metric)
Key assumption: ¢ /—>
Mp,
~ 10'8 GeV
IR uv
M, Mexp
~ 1GeV ~ 2 x 10% GeV
* Toy model for QFT(SM + metric):
* (. contains all SM fermions
S = SpH + SkinF + Sur Y = Nambu-Gor’kov spinor
S 1 R 2A ) ...Dirac fermions, right-handed neutrinos included; SU(2)], gauge
- — + coupling asymptotically free in ASQG
EH 1671Gx /x \/§ ( cc
_ = * split gy = Suv + My
Sk]II,F - /X \/glplvlp ...in general: eigenvalues of —Ag defines notion of scale
...often in practice (i.e., here): gyv — dyv = momentum is
~ABCD ‘good quantum number’ after all ...
S = G / NANR DT ¥ (&J/’)
2




(Pure) gravity sector

SEH

1
SEH - 167T7GN/X\/§(_R+2ACC)

@ Fluctuations hy,, decompose into spin-2, 1, and 0 parts
@ Landau-DeWitt gauge: only transverse traceless h;fv and conformal h = hﬁ modes

propagate
ht hLeo
nv 2
T = ﬂ(&%‘%...)
pz —2Ac H-v
I I 321GN

_%Pz + %ACC



Remark: (Pure) gravity sector - renormalisation

@ Obs.! [Gn] = 1/(mass)? - ‘perturbatively non-renormalizable’

classical

200 1
(’):A*H-/“z /g R*® ; R, R",
© = 2880(47)" € il ol
Goroff/Sagnotti ‘86



Remark: (Pure) gravity sector - renormalisation

@ Obs.! [Gn] = 1/(mass)? - ‘perturbatively non-renormalizable’

@ Predictivity restored by imposing UV quantum scale symmetry
(= Asymptotic Safety; latest reviews: Eichhorn '19; Reichert '19; Bonanno et al. '20; Eichhorn/Schiffer '24; ...)

In(Gn(k)K?) GN

Wikimedia Commons

7 Ac.c.

classical Reuter/Saueressig '02




Remark: (Pure) gravity sector - renormalisation

@ Obs.! [Gn] = 1/(mass)? - ‘perturbatively non-renormalizable’
@ Predictivity restored by

(= ; latest reviews: Eichhorn '19; Reichert '19; Bonanno et al. '20; Eichhorn/Schiffer '24; ...)

In(Gn(k)K?) GN

Wikimedia Commons

classical

@ Use as ‘backdrop’ for fermions (i.e.: neglect backreaction of fermions on metric)

Reuter/Saueressig '02

7 Ac.c.



Fermions

@ Propagator has standard form
4

—
@ Vertices coupling metric fluctuations

with fermions from ¥ and /g
...keep only to O((hy)?)

O ((G&BCD)O)

7]

= —gPor L2y
X (5141P1§P‘2P25V1V2 E )

SkinF + SaF
Sking = / VSPiVy w)
x y=("
Sup = GABCD / NAN DD
X

GaBCD: Most general 4-Fermi interaction;

I
proton decay ~ G cf.: Grzadkowski et al. 10
~ABCD
O (G )

s
s
s
7
7
N
N
N
N
N



Computational framework

O [T S

dlnk 2
P = (hﬁl,,h, $,3) T; k — RG scale; R — regulator

fry Rev. Mod. Phys. '12; Dupuis et al. Phys. Rept. '21;
and refs. therein

!
aRk [(D] cf., e.g.: Berges et al. Phys. Rep. '02; Metzner et al.

Functional renormalization group (FRG), general version

@ I' — 1Pl effective action aka Legendre effective action, quantum effective action, ...
I', — average 1Pl effective action aka ‘blocked -"-
— fluctuations above scale k ‘integrated out’
@ 1-loop exact in principle

assuming self-consistent solution
loop expansion - start with T' = S plus fixed-point iteration

@ Ansatz for I'y defines approximation scheme

@ Often: expand in canonical dimension (i.e., powers of , 1, 3,), keep least irrelvant terms
justification: ‘near perturbative’ nature, cf. Codello/Percacci'06; Niedermaier ‘09, "10; Eichhorn et al. "18a,b; ...



Computational framework

ark [¢] — 1 STI' [ ( 52rk [(b] r [ ] >_1 aRk [Q] ] cf,, e.g.: Berges et al. Phys. Rep. '02; Metzner et al.

= Rev. Mod. Phys. "12; Dupuis et al. Phys. Rept. 21;
DD T dlnk

and refs. therein

D= (hﬁwh, , 7€) T ; k — RG scale; R — regulator

Functional renormalization group (FRG), ‘quick and dirty’ version

° Ansatz: rk = S|h}w4)\/mh]u/rGN4)GN (k)/AccHACC(k)/IIl]% V lelP/GF%GF(k)

@ Draw one-loop diagrams with vertices and propagators from before
@ Replace couplings and propagators with ‘dressed’ versions
@ Replace momentum integrals with ‘threshold functions'’

diagram with ng internal fermion lines, n; spin-2 lines, n.on¢ conformal mode lines = Iy | n.
e.g. e \ / 327TGN Ny (—6+17N)gN
! ~ 001 ™~ 7273 3
AN 8’92 =+ Acc (3 _4/\CC)2
N = 7kak h’IZN,gN = GNk /\cc = Acc/k



Diagrammatics

Eichhorn/S.R. Phys. Lett. B'24

o T~
/ \
\
[ , \
\ /
AN /
< _ -

@ Result: N.B.: 14 in fact independent of precise index structure ABCD < ‘gravity blind to internal indices’

KRG (k) = (24 1ar) G (K) + O((GIE)?)

@ Explicitly: Litim regulator, Landau-DeWitt gauge, cf. Eichhorn/Gies '11

o[ 9(A=3) 6(4rc—9) , 5 ., 3
T4 = SN T (B4 )? | B(B — 4 )? | 4m(l— Aec)? | 27(Ahec — 3)2
29¢n  32gnA
= Ton + g +O(NE)

157 971




Discussion |; General

Eichhorn/S.R. Phys. Lett. B'24

kG (k) = (2 + mae) G (K) + O((GI)?)

2.0 1 @ Generally: 74¢ > 0

...assuming A¢c > —9 (pheno. relevant)
174F (gN’ ACC) ‘metric fluctuations suppress proton decay’

@ hence a fortiori: 2 + 14 > 0
= naively ‘unnatural’ Gzléql (Mqg) < 1is
actually ‘natural’ if QFT(SM + metric) holds at
Maqg < k < kyy for kyy large enough

1.5

0.5 N.B.: Much milder assumption than (eff.) AS!

Caveats/assumptions:

* Einstein-Hilbert truncation should remain good
1 . L 1 1 3 approximation

-04 -0.2 0.0 0.2 0.4 * B-violation from UV completion is (at most)

Acc ‘natural’ GZ,T” (kpy) ~ 1

0.0k




Discussion Il: AS and effective AS

Eichhorn/S.R. Phys. Lett. B'24

@ Assumption: Running of gn, Acc negligible for Mqg < k < kyy (= quasi-FP regime)



Discussion Il: AS and effective AS

Eichhorn/S.R. Phys. Lett. B'24

@ Assumption: Running of gn, Acc negligible for Mqg < k < kyy (= quasi-FP regime)
@ Integrated flow:

I 2+14F eff. AS
1> ngq (Mqg) ~ (1\;'06) <—/—>Gzqu(kuv) ~1

uv
Maqg kuy

IR ﬁ uv
Mp Mexp { Mp,

~1GeV ~ 2 x 106 GeV ~ 108 GeV




Discussion Il: AS and effective AS

Eichhorn/S.R. Phys. Lett. B'24

@ Assumption: Running of gy, Acc negligible for Mg < k < kyy (= quasi-FP regime)

@ Integrated flow: )2+mF eff. AS

1
1> Gg{" (Mqg) ~ (A# ——/—» G (k) ~ 1

T
] p
\, log;, .
1 P lkuy=Maqa
| —225

1 — 200
75
1 =150
125
100
75

o 5 10 15 20 25
loglo(kuv/MQG)



Discussion IlI: GUTs

Eichhorn/S.R. Phys. Lett. B'24

@ Consider GUT with simple gauge group, coupling gcut
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UG = 264"+ Cughr

@ Assume kakgGUT = b0g3GUT bg >0
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@ Assume kakgGUT = bog%UT bg >0
@ Problematic: Landau pole, large proton decay rate
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@ Idea: Couple to ASQG, modifies B functions, allows UV completion
more generally for any ‘non-abelian QED’ de Brito/Eichhorn/S.R. arXiv:2311.16066



Discussion IlI: GUTs

Eichhorn/S.R. Phys. Lett. B'24

@ Consider GUT with simple gauge group, coupling gcut

.o . . qqq!
@ Mixing of quarks and leptons = GUT gauge fluctuations induce G,
1 1 - 2
kokGaH' = 2GII" + Coglur + 148 (9N, M) + C1NgGUT
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Discussion IlI: GUTs

Eichhorn/S.R. Phys. Lett. B'24

@ Consider GUT with simple gauge group, coupling gcut

.o . . qqq!
@ Mixing of quarks and leptons = GUT gauge fluctuations induce G,
1 1 - 2
kokGaH' = 2GII" + Coglur + 148 (9N, M) + C1NgGUT

@ Assume kakgGUT = iﬁ;(ﬁx,/\(C,)g(f;UT + bogéUT bp >0 rfg >0
@ Problematic: Landau pole, large proton decay rate

@ Idea: Couple to ASQG, modifies B functions, allows UV completion
more generally for any ‘non-abelian QED’ de Brito/Eichhorn/S.R. arXiv:2311.16066

@ UV scale symmetry = upper bound on gcur(k = Mqgg) and Gﬂql(k = Mog)

—> Coupling to ASQG generates upper bound on decay rate (/)
2
@ Typical numbers for C's and f's’ = ’GZ’,’f’i <1077

2Eichhorn/Held/Wetterich '18




Discussion IV: B-symmetry in ASQG

Eichhorn/S.R. Phys. Lett. B'24

, Mod 241 eff. AS
1> GJI" (Mqg) =~ ( QG) <—/—>Gzqu(kuv) ~1

kuv
Mo o
IR W uv
Mp Mexp { Mep
~1GeV ~2x10%Gev| |~ 108 GeV

@ Corollary (strict AS limit): kyy — co = GZ?;ql(MQG) -0

o InFP language: GI¥ = 0.and GII" + 0 is irrelevant perturbation

20



Discussion IV: B-symmetry in ASQG

Eichhorn/S.R. Phys. Lett. B'24

, Mod 241 eff. AS
1> GJI" (Mqg) =~ ( QG) <—/—>Gzqu(kuv) ~1

kuv
Mo o
IR W uv
Mp Mexp { Mep
~1GeV ~2x10%Gev| |~ 108 GeV

. - I
@ Corollary (strict AS limit): kyy — o0 = GjL’ (Mqg) — 0
@ In FP language: GZ‘Q/ — 0 and GZ@I # 0 is irrelevant perturbation

Y
ASQG = B-conserving UV completion of GR

20



Discussion IV: B-symmetry in ASQG

Eichhorn/S.R. Phys. Lett. B'24

° C” 0 = ASQG = B-conserving UV completion of GR
— Truncation-independent ‘proof”: Use Quantum Action Principle for regularized effective action I'
e TH®] / D& ¢ SIPIH(@x—Px)T X [@]— JREY (dx—Px) (Py—Dy)
STy [®] = <» (S@J — (Px — Px)I[@] + 77”“ (Px — Px)(Py — <1>y)>>
k;®
with

(FI®]), ¢ = e /Dq)u S[@]+(Dx—Px )} X[@] - I RYY (Dx—Dx) (Dy — Py ) F[)]

ke

Ward-Takahashi identity for B-symmetry

N.B.: Assuming reg. preserves B-symmetry, manifest for Dirac fermions (more tricky for Weyl!)

6.S=0 = 6.T; =0

21



B-symmetry in ASQG vs QG folklore

Ward-Takahashi identity for B-symmetry

N.B.: Assuming reg. preserves B-symmetry, manifest for Dirac fermions (more tricky for Weyl!)

5.S=0 = 6.4 =0

>

? @ Assumptions that generically lead to B-violation may not be valid in
\ / ASQG, many open questions

e.g., what do ASQG black holes ‘look like”? How about their dynamics?
— difficult from first principles - see however Pawlowski/Trankle 24; usually based on ‘RG
improvement’ of classical solutions Bonanno/Reuter ‘99, '00, '06; Reuter/Weyer '04;

Cai/Easson "10; Liu et al. '12; Falls et al. "12; Falls/Litim '14; Koch/Saueressig '13, "14;
/ \ Saueressig et al. "15; Gonzalez/Koch '16; Torres "17; Adéiféoba et al. '18; Held et al. '19; Bosma
q q

et al.'19; Platania '20; Bonanno et al. '21; Ishibashi et al. '21; Borissova/Platania '23; ...
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B-symmetry in ASQG vs QG folklore

Ward-Takahashi identity for B-symmetry

N.B.: Assuming reg. preserves B-symmetry, manifest for Dirac fermions (more tricky for Weyl!)

6.S=0 = 6. =0

>

? @ Assumptions that generically lead to B-violation may not be valid in
\ / ASQG, many open questions

e.g., what do ASQG black holes ‘look like”? How about their dynamics?
— difficult from first principles - see however Pawlowski/Trankle 24; usually based on ‘RG
improvement’ of classical solutions Bonanno/Reuter ‘99, '00, '06; Reuter/Weyer '04;

Cai/Easson "10; Liu et al. '12; Falls et al. "12; Falls/Litim '14; Koch/Saueressig '13, "14;
/ \ Saueressig et al. "15; Gonzalez/Koch '16; Torres "17; Adéiféoba et al. '18; Held et al. '19; Bosma
et al.'19; Platania '20; Bonanno et al. '21; Ishibashi et al. '21; Borissova/Platania '23; ...
q q

@ More generally: Horizons ‘eat’ global charge

— Now: Can these ‘problematic’ contribs to gravitational path integral be suppressed by
non-minimal curvature terms?
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Dynamical suppression of horizons: construction

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

Assume gravitational path integral given by [ Dge'er(8).,

Can (quasi-)local contribution to Lagrangian [ Lior(g(x))pg(x) C Sefr(8)
(1g(x) = \/— det(g(x)) d*x) be found so that Se(g) — oo if ¢ has horizon?

Similar to: Higher-order curvature terms in Ser = Sesr divergent for (many) types of ¢ with curvature singularities
cf. Borissova/Eichhorn '21, Borissova '24

Claim:

(CZ 8

ﬁhor = [4C2(VC)2 — (VC2)2]2 C — Weyl tensorw.r.t. g
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C — Weyl tensor w.r.t. g
many ‘nice enough’ spacetiems

Proof:
1. Obvious (square of scalar)
2. Compute explicitly in coordinates such that
Use that 4C%(VC)? — (VC?)? changes sign with m(v,7) — R(r), cf. Coley/McNutt '18, McNutt et al. 21

2m(v,r)
2 _ _ 2B(vr) _ ’
ds = —e <1 R(7)

) dv? + 2P do dr 4 R(r)?dr® + rPdQ?
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Claim: 1. Is positive everywhere, L (g(x)) > 0 for all x
(C2)8 2. Seft(g) = oo if g is rotationally symmetric and
Lhor = .
hor = eV o2 — (V)22 has (apparent) horizon(!)

3. Can be defined(!) and not divergent(!) for
many ‘nice enough’ spacetiems

C — Weyl tensor w.r.t. g

Proof:
1. Obvious (square of scalar)

2. Compute explicitly in coordinates such that
Use that 4C%(VC)? — (VC?)? changes sign with m(v,7) — R(r), cf. Coley/McNutt '18, McNutt et al. 21

ds? = —e?Plr) <1 - 27;&%”) dv? + 2P do dr 4 R(r)?dr® + rPdQ?

3. Compute explicitly for ds> = —(1 + cr?)dt? + a(t)?(dr? + r*dQ)?)

Finite for all ¢, vanishes for Weyl- ﬂat ¢ — 0 (flat Minkowski ¢ = # a fortiori)
24



NANES

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

(C€%)°
((4C(VC)2 = (VC2)2)2

[’hor =

Non-local dynamics (not analytic in g and its derivatives)

25



NANES

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

(C€%)°
((4C(VC)2 = (VC2)2)2

[’hor =

Non-local dynamics (not analytic in g and its derivatives) - how problematic is this?

25



NANES

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

(C€%)°
((4C(VC)2 = (VC2)2)2

[’hor =

Non-local dynamics (not analytic in g and its derivatives) - how problematic is this?
A: May be not too bad:

25



NANES

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

(C€%)°

Lhor = (4C2(VC)? — (V2 )2)2

Non-local dynamics (not analytic in g and its derivatives) - how problematic is this?
A: May be not too bad:

@ More severe non-localities (e.g. [J~!) appear in non-local cosmology
Deser/Woodward ‘07, Biswas et al."10, Amendola et al. "17

25



NANES

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

(C€%)°

Lhor = (4C2(VC)? — (V2 )2)2

Non-local dynamics (not analytic in g and its derivatives) - how problematic is this?
A: May be not too bad:

@ More severe non-localities (e.g. [J~!) appear in non-local cosmology
Deser/Woodward ‘07, Biswas et al."10, Amendola et al. "17

@ (Mild) non-localities can arise as continuum limits of LQG/spin foams/...
Borissova/Dittrich '23, Borissova et al. '24 (... but not clear whether they also suppress horizons)

25



NANES

Borissova/Eichhorn/S.R. Class. Quant. Grav. '25

(C€%)°
((4C(VC)2 = (VC2)2)2

[’hor =

Non-local dynamics (not analytic in g and its derivatives) - how problematic is this?
A: May be not too bad:

@ More severe non-localities (e.g. [J~!) appear in non-local cosmology
Deser/Woodward ‘07, Biswas et al."10, Amendola et al. "17

@ (Mild) non-localities can arise as continuum limits of LQG/spin foams/...
Borissova/Dittrich '23, Borissova et al. '24 (... but not clear whether they also suppress horizons)

@ Certain non-localities (~ RO"R, R € Riem, Ric, Scal) lead to divergent black-hole entropies
Platania/Redondo-Yuste '24

...can ‘bypass’ arguments against global symmetry by contradiction with area laws, at cost of giving up thermodynamic
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@ More severe non-localities (e.g. [J~!) appear in non-local cosmology
Deser/Woodward ‘07, Biswas et al."10, Amendola et al. "17

@ (Mild) non-localities can arise as continuum limits of LQG/spin foams/...
Borissova/Dittrich '23, Borissova et al. '24 (... but not clear whether they also suppress horizons)

@ Certain non-localities (~ RO"R, R € Riem, Ric, Scal) lead to divergent black-hole entropies
Platania/Redondo-Yuste '24

...can ‘bypass’ arguments against global symmetry by contradiction with area laws, at cost of giving up thermodynamic
interpretation of black-hole entropy - not in effect here!

@ Usual disclaimers (unitarity, stability, ...) apply
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@ B-violation is irrelevant perturbation in ASQG
Further consequences of interplay with GUTs in QG regime?
Interplay with other 4-Fermi operators (— SSB, ‘competing order’ problem)?

@ Technical ToDo list: gauge dependence, reg. dependence, extended truncations ...

@ Experimental perspective: Proton decay
bounds may impinge on QG predictions!

M, Mexp
~1GeV ~ 2 x 10" Gev|  Hyperk juno,

@ Horizons (i.e. those that ‘eat’ global charge) may potentially be suppressed in path
integrals using actions that are only mildly non-local
Unified construction for general horizons? Wormholes/topology change?
Black-hole entropy?
Derivation from more fundamental (e.g., discrete) approach or integrating out DOFs?
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