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Presentation Overview

@ (The good, the bad and the ugly)™

@ Cosmological inflation in a nutshell

© Renormalization Group Flow of Scalar-Tensor theogy"ﬂ
O Emergence of Inflation from the UV

@® Conclusions



(The good, the bad and the ugly)~!

(D Euclidean Signature

U

@ Gauge, regulator and trace method

U

(@ Truncation and approximations

All calculations in this talk will be
performed in euclidean signature, and in
the end it will be assumed that
observables at k = 0 are independent of
this.

|

Background computation, exponential
splitting of the metric, “physical gauge”,
tield dependent regulator, heat kernel
method, truncations ...
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Cosmological Inflation in a nutshell
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1Credit images: D. Baumann Lecture notes in cosmology https://cmb.wintherscoming.no/pdfs/baumann.pdf
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Cosmological Inflation in a nutshell

Slow-Roll inflation
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Credit images: D. Baumann Lecture notes in cosmology https://cmb.wintherscoming.no/pdfs/baumann.pdf
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Cosmological Inflation - Some open questions

Tensor-to-scalar ratio (rg.002)
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3Credit image: Planck 2018 results. X. Constraints on inflation. arXiv:1807.06211

e Where do these
models come from?
Can we build one
from fundamental
physics?

* Can we predict the
initial conditions of
the inflaton field?

U
Asymptotic Safety (?)
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How is this story connected to Asymptotic Safety?

As you probably guessed, the story is connected by a RG flow

I'(k = 00) = UV fixed point

J
I'(k = 0) = Full effective action

— Study the phenomenology of the emergent I'(k = 0)
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4D Scalar-Tensor EFT: RG Flow
(D Scalar-Tensor Model: Unknown F(k, ) and V (k, ¢)

D) = [ dx/BF( )R + V(k ) + 50,00"0)

U
@ RG flow of F and V given by Non-linear PDEs of second order *
U
1 3FOD (k, )2 + F(k, )

kVED (k@) = oV (k. 0) -4V (k. 0) + 1

" 320 GFOD (k, o) + F(k, ) (VO (k, ) + 1)

37
38472

F(k, ) ((3FP (k,)* + F(k, ) (-3F*? (k, ) + 3V (k, ) + 1) + 2F (k, ) VP (K, 0)?)
+

KFMO (k) = oF OV (k, ) - 2F(k, ) + o

96m2 (3O (k, )2 + F(k, ) (VO (k, ) + 1))

4R0berto Percacci, Gian Paolo Vacca. arXiv:1501.00888
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4D Scalar-Tensor EFT: RG Flow

(D Scalar-Tensor Model: Unknown F(k, ) and V(k, ¢)

D) = [ d'xyR-F( )R+ Vkp) + 50,00"%)

U
@ RG flow of F and V given by Non-linear PDEs of second order

U
@ Shift-symmetric (¢ - ¢ + c), UV-fixed point

41

lim {F(k, ), V(k, )} = {F., V. } = {768772’12877

5 )

5R0berto Percacci, Gian Paolo Vacca. arXiv:1501.00888
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4D Scalar-Tensor EFT: RG Flow

(D Scalar-Tensor Model: Unknown F(k, ») and V(k, ¢)

D) = [ d'xyg-F(lp)R +V(k o) + 50,60")

U
@ 3 Relevant directions:© F~F, + (513(’%))‘9 and V=V, + 5V(k70)9

(0F,6V)1 =(0,1) (8F,6V)2=(1,0) (6F,8V)3 = (-1 +327%¢?,0)

{01=4,0,=2,05=0} — Higherorderanalysis — All relevant!

6R0berto Percacci, Gian Paolo Vacca. arXiv:1501.00888
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4D Scalar-Tensor EFT: Program towards objective

* Boundary condition
at k = oo is settled
by the fixed point.

* We have to fix
boundary
conditions in the ¢
direction, a priori
not determined by
the UV fixed point.

® We are interested
on the k = 0 curves,
which are the
predictions.
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4D Scalar-Tensor EFT: Splitting gravity and scalar field
(D Scalar-Tensor Model: Unknown F(k, ) and V (k, ¢)

D) = [ dxyBEFE R+ V(E ) + 2 0,00"0)

Y
We separate the constant parts of F and V and define (¢? = Gr?)

Lf(0?) , 2 roldd) 1.
P(k) = [ dryg(-— 2R ) Lo ome
(k) R G e TR i L)

U

@ UV-fixed point is now expressed as

487 691272
lHm {Gy, A} = {208 72T
Jm{Ge At = {7 g

b lim £k 0%) = lim o(k,¢%) = 0
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4D Scalar-Tensor EFT: Boundary conditions in field direction

One can expand the flow equations near ¢ = 0, assuming

fk,¢%) = fi(k)¢* v(k,¢%) =01 (k)¢

Furthermore, if one assumes f; (k),v; (k) << 1, one obtains
12\/Gy B ft + (967* - 827Gy ) f{ = 0 82\/Gy Bc vy + (48w — 41Gy) v} = 0

and the solutions are (1, mg are free parameters)

41 (%F - Gy) my
487

0OV (k,0) = vy (k) = limoy (k) =mg  lim vy (k) =0

—> 00

nt
f(o’l)(k,()) =fi(k) = En; 102; (487r—41Gk) ii—l}(}fl (k) = m{) klilglofl(k) =0
0 487

T 41n
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4D Scalar-Tensor EFT: RG Flow

Scalar-Tensor Model: Unknown f (k, ¢?) and v(k, ¢?) (¢? = Grp?)

_ 1 +f(k“@2) 2Ak +U(k (r/) ) s
F(k)‘fd4x@(_ 161G, Nt T(lenGrz T2 ne?")

U
@ The RG flow has 4 degrees of freedom, but 2 are fixed by observations!

o*f . 0%v

~ -39 -2 ~ 1n—120 - J -z v
G() ~6.71 x 1077 GeV y )\0 ~10 y 0= 8(;52 |¢=07k=0 my = 8¢2 |¢=0,k=0

Only 2 free parameters: m’:), mg
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4D Scalar-Tensor EFT: Numerical Solutions

mj) = 0.42 mg =2.75 x 1071
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Emergence of Inflation from the UV

By means of a Weyl transformation (g - gg), one goes to the Einstein frame

. Veg(k,¢(0))  Ouodtc
f dx\/_(_l67er (167G~ 2G; )

Where the effective potential turns out to be

2\ +0(k, ¢*(9))
(1+f(k,¢*(0)))

with the UV and IR limits

Vegr(k, ¢(0)) =

. (o
limy oo Vi (k, (0)) =27 | limyg Ve (k, 6(0)) = Fop o
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Emergence of Inflation from the UV
hInk—>0 Veﬂ(ku ¢(0))

Veff(0,¢)x101°
10

Slow-Roll Inflation

¢; =1.55
¢r =0.25
1s ~0.965
r ~0.005
. . Ner ~66
2rF - As ~2.06 % 107
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Emergence of Inflation from the UV

Veff(k,¢)

Universe starts near 1
UV-fixed point with
arbitrary initial value of 0.001

¢ (shift-symmetry) &

” e ————
Adiabatical evolution T~
gives initial condition g T

of inflaton!

10—12 -

0.05 0.10 050 1 5 10
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Take home messages

We studied the Renormalization Group
Flow of scalar-tensor theories and found

a UV-Fixed point (Asymptotic Safety).

J
We connected the UV with the IR by
solving the RG flow equations and
obtained non trivial emergent potentials.

U

The emergent potentials could give rise
to an inflationary period fitting current
observations.

U

RGF improvement can potentially

explain the initial conditions of inflation.

® Thank you for your attention ®

17/18



Future?

Explore expansions of the
truncation? Maybe a non trivial
kinetic term...

Explore equations without
approximations?

Explore gauge and regulator
dependence?

Any ideas from you?

® Thank you for your attention ©
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Appendix 0: RG Flow Equations

In order to determine if the superficially marginal direction is relevant we expand
around

F(k,¢) ~ F, - 6FO(k) + 32r6F1(k)p* V(k, ) = V.,
and obtain the flow equations for the couplings JF0(k), and dF1(k)

dOF1(k)  3072725F1(k)> ddF0(k)
e 41 k= = ~2(6F0(k) - oF1(k)),
with solutions
2 41k1%Ei (21og (£
SFL() = —— . GPO(K) = o - i( ;)gz(kl))’
307272 log(ﬁ) k 153672k

where kO and k1 are finite positive real numbers, Ei is the exponential integral, and
because we are expanding near the NGFP, we assumed k >> kO, k1. Therefore
limy_, ., {0FO0(k), 6F1(k)} = {0, 0}, thus making the superficially marginal
perturbation a relevant one.
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Appendix 1: Weyl Transformation

The Weyl do 1 L3 (f (k,¢*)?

2
transformation to go (6_) G k. 2 1 k. 42))2
from the Jordan frame to ¢ (1+ft ) (+f k%)

the Einstein frame is
gﬁu = (1 +f(k7 ¢2))gﬂl’
| 5

For slow-roll inflation
this gives the relations
atk=0 3t

¢i=155->0;~1.8
¢ =0.25 - 07 ~ 0.26

20/18



Appendix 1: Weyl Transformation

Veff(0,0)

8.x10710

6.x10710

4.x10710

2.x10710

Veff(0,0)

1.5x10710

1.x10710

5.x107""1

.................................

One can of course,
compute the potential as
a function of the new
field o. The overall
shape is similar to the
shape as a function of ¢.

o; ~1.8
oy ~0.26
15 ~0.965
r ~0.005
N, ~66
A 22.06 %107
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Appendix 2: Slow-roll observables

00, 1

, 3 (k%))

(557 -

(T+f(k.D)

(L+f(k,¢?))?

Einstein Frame

Jordan Frame

L1 gD 1 Valo)
872 V(o) 87" V(o)
ng=1-6e+2n r=16¢

1 Veﬁ‘ o do

As= oapze Ne =87 /a, N

(®)
-2 eﬁ

_87r2(V (¢))( %)

~ Ve ()" eﬁ(d)) a¢2
5 GG ) x—ﬁ
ns=1- 6e+277 r=16¢
1 Veg ~ % d¢ Oo
ST 42402 Nef_SF/,- \/Z%
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Appendix 3: Dimensionless variables

The determination of the RG flow and the existence of fixed points is usually done
for dimensionless variables. In our case, we start with dimensionful (™)

D) = [ d5URFR DR+ V(k,5) + 50,50"0)

and end up with
4 1 m
L) = [ dx RFk @R+ V(K 9) + 50,0")

where F = k;, V= ;Z, = ‘]f, R = k; and x = xk.
More in detail, if one has individual couplings instead of functionals, like the
newton coupling, one uses Gy = Gy k2.

Notice that since limy._, ., G = G, then limy_, o, G = 0.
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Appendix 4: Fixing Constant Dimensionless field on the flow

Usually one writes the flow equations in terms of the dimensionless variables ¢
defined as ¢ = k(d*%’ and keeping them constant as functions of k. For this, one

usually defines, for example F (k, @) = k*F(t, ). In this work we used other

variables defined as ¢ = ¢* = Gy?, and we kept them constant as functions of k.
This amounts to the transformations

F(t,Gp?) = f(t,)
FO(t,0) >GfON (1)

(0,n)
w nﬁcf(o n)(t w) +f(l “)(t ¢) +1 IBGf(O n+1)(t w))

n
ot G
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Appendix 5: Final Equations Syy

The change of variables realized to compactify the domain is k" = G(k).
Furthermore, we also used ¢ = ¢?. This amounts to replacing f(k, $*) — f(G, )
and v(k, ¢*) - v(G, ), and the respective derivatives

kfAO (k, ¢?) — FIO(G, ) Bg and ko0 (k, $?) - o9 (G, 1)) B, and the obvious
chain rule for . This allows us to solve the equations in the domain G € [0, G.]
instead of k € [0, oo ]. The resulting equations are

256767 (47 (F(G, ) +1) (24D (G, %) + 290D (G, 1)) =D (G, 0) (34 OV (G, $)? + 4x(F(G, ¥) + 1))
0= (v(O:D (G, 0) +12872G2) (32wG2 (39 (0D (G, ¥)2 +4m(f(G, %) + 1)) + (f(G, %) + 1) (0D (G, %) + 24002 (G, )))

(24576736701 (G, 0) - G (01 (G, 0) + 1287%G?) ((4562 - 487) 0D (G, 0) + 12877 (41G? - 487\') G)) (20(G, %) - w0 @D (G, )

247 (001D (G, 0) +12872G2)?
G (01 (G, 0) +1287%G?) ((45G2 - 48) (1) (G, 0) +128n% (41G? - 48) G*) — 245767 GEF (1) (G, 0) ) o (G, )
487 (0001 (G, 0) +12872G2)?

+G (290D (G, w) +40(G, 1))
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Appendix 5: Final Equations Syy

201 (G, 0) +1287%G?) (4567 - 48) oD (G, 0) + 12877 (41G? - 487) G?) - 491527°GOF 0D (G, 0)

0=-
2G2 (v(0:1) (G, 0) + 12872G2)?

3 (245767°GoF D (G, 0) - (001 (G, 0) + 12877G?) ((45G% - 487) 0" (G, 0) + 12877 (41G2 - 48) G?) ) OV (G, v)
@2 (001 (G, 0) + 12872G2)?

(21 (G,0) +1287%G?) ((45G2 - 487) 0(*1) (G, 0) + 12877 (41G? - 48) G?) - 245767°G*F (01 (G, 0)) £(G, w)
G2 (v (G, 0) + 12872G2)*

(245767°G°F (01 (G, 0) - (01 (G, 0) +1287%G?) ((45G” - 48) (1) (G, 0) + 12877 (4167 - 48) G?) ) 1 (G, )

2G (00D (G, 0) + 12872G2)*
8(F(G, ) +1) (256m2G* (3uf 0D (G, )2 +4m (F(G, ) + 1)) (-3 OV (G, ¥) - 6vf "D (G, ) + 8))
" (32mG2 (39 0D (G, )2 +4x (F(G, ) + 1)) + (F(G, ) + 1) (20D (G, ) + 24002 (G, 0)) )
, B0G v +D (487G (380D (G, )2 +4n(f(G, %) + 1)) (v (G, ) + 200D (G, v))) , 487D — (G, ) - 1)(G )
(327G (390D (G, )2 +4m (F(G, ) + 1)) + (F(G, %) +1) (v D (G, ) + 290D (G, %)) o
. 8((G.w) + 1) (G, 9) + 1) (60D (G, ) + 200D (G, 1)) .
(327G (3uf O (G, )2 + 4 (F(G, ) + 1)) + (f(G, %) +1) (20D (G, ) + 24002 (G, %))
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Appendix 6: Allowed boundary conditions

One can expand the flow equations near ¢ = 0, by assuming f(G, ¢?) = f1(G)¢? and
v(G, ¢*) = v1(G)¢? and expanding up to order ¢?. Furthermore, if one assumes
f1(G),v1(G) << 1, one can expand to the lowest non-trivial order in f; and v;. The
resulting equations are

82Gv1(G) + (487 - 41G*) v} (G) =0
12G£1(G)* + (967 - 82nG?) f{(G) = 0

and the solutions are (m, m{) are free parameters)

(% -G
487
i

0 . ~ . _
g () WO G0

487

U(O’l)(G,O) _ U1(G) - (];11’1(1)7]1(G) = 7718 GhIél Ul(G) =0

fOV(G,0)=f1(G) =
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Appendix 7: Different choices of free parameters m{ and m’(()

Different choices for the parameters my, m’(() lead to different results of the
emergent effective potentials. This is somewhat similar to the swampland
program in string theory, where only some parameters are compatible with
observations.

108v(0,¢%)

50 | *mg¥=6x10"10
«mg¥=5x10710
4F | empY=4x10"10
amgY=3x10"10
30 | mmg¥=2x10"10
® mg¥=1x10"10
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Appendix 8: Scaling of interactions and k limits

The construction of the Sy is subject to the knowledge of the limits of the
interactions as functions of the scale k. In the case of a negative mass dimension
coupling G = k% (like Newton’s constant)

lim G =Co = lim &~ 1imG=0
k—>0 k->0 k" k—>0
In this case, one can use the coupling G to turn all the other relevant interactions
(u®) into negative mass dimension, and all the irrelevant interactions (v") into
dimensionless. In this case, the Sy will be functions v(u), with domain [0, u, ],
where v(u.) = v, in the UV, and v(0) = v is the effective coupling in the IR. An
example of how to make a coupling dimensionless, can be the cosmological
constant

2A 2\
167G (167G)?

(A =167GA)

29/18



Appendix 8: Scaling of interactions and k limits

The same thing happens with the fields. For example, a scalar field ¢ = ;75
Since we want to work with variables that finite in the limit gf k — 0, to be able to
do numerical calculations, we can work at constant ) = G@? = Gy? where

lim G3? = lim Go? = Go@? = <
lim Gp™ = lim G 0P =1 < o0

also

lim G@% = lim Gy? = Gop? =1 <
k—>o00 k—>o00
working with these type of field variables allows one to map the UV and the IR
without needing to to infinite values of the field, as one would have to do when
working with constant ¢ defined as ¢ = ]ﬁ. This is because the only well
defined variable between those 2 in the IR is ¢, and for finite ¢, one must study
99 —> O0.
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