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@ ASQG and CQG are such non-pert. programmes
@ However, apparently profoundly different:
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ASQG mostly Euclidian essential widely used
CQG Lorentzian absent so far dispensable

©

has prevented interaction btw. research fields to date

©

Q: Are these differences truly unsurmountable?

(]

A: Not really, with proper adjustments understood
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gauge invariance manifest, will never talk about non-observables

©

Construct r.p.s. path integral (Pl): Euclidian QFT formulation

©

Integrating out momenta: necessary measure adjustments absorbed by
canonical transformation in CQG formulation

Result: Euclidian QFT of Lorentzian QG as highly non-linear o—model
No contradiction: Lorentzian CQG and Euclidian formulation can co-exist
E.A.A. renormalisation: first steps
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New technical development: tempered cut-off functions and Barnes heat kernel
time integrals
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(.U‘) v = Oa i) D)

Lap = —|det(@)["/2 [£ (" Tou T +1)+ 0" T (W; S,

@ 2x (1+D) minimally coupled scalar fields (T, p), (S, W), j=1,..,D
@ perfectly generally covariant
@ classical physics (Euler-Lagrange eqgns.):

o U, =V, T: unit timelike geodesic co-tangent L to S/ =const. lines

o pressureless p= D~ '[U, U, + gu] T =0

@ interpretation: collision free, synchronised geodesic observer congruence
labelled by S/, proper time T coupled to GR (backreaction)

@ comes as close as possible to idealisation of test particles
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@ Dirac’s constraint analysis:
0 2x (D+1) + (D-1) primary constraints
7y =2=2 == Wpla— Walp=0
@ primary Hamiltonian

h=utmy+vZ+v;Z +whia+ N ey

o (D+1) + 2 secondary constraints ¢, = ¢ = ¢{p = 0; 2 x D velocities
v=v*y = v, wA=wlfixed

o f=2x(D+1) first class constr.: 7, ¢y,
s= 2 x (D+1) second class constr. Z, Z;, ¢, ¢

o physical canonical pair counting: k-f-s/2=D(D+1)/2

o Dirac bracket: eliminates 2nd class constr. and canonical pairs
(p, 2), (W}, Z))
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@ Properties:

@ = Ham. constr. of Lorentzian GR at unit lapse, not constrained to vanish
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@ Synchronous gauge motivated by class. e.o.m. to fix first class. constr.
P=T-T., ¢ =8-8, T.=t 8, =5, x

O fixes velocities u* = 0, lapse/shift N* = Ni' = §{', solve ¢, = 0 for |, = I};
@ Physical (true, observable, gauge inv., reduced, ..) canonical pair left: (gap, p?°)
@ physical Hamiltonian acting on functional F of (gap, p?)

{H,F}:= {/ dPx h(X), F}ii, =8, .22, . W=W* N=Ny ,u=t v—v* ,w—w,
@ Result:

H=r"" [ dx[idet(@)]~"/2{(par PP~

@ Properties:

@ = Ham. constr. of Lorentzian GR at unit lapse, not constrained to vanish

@ H conservative (no explicit time dependence)

o D+1 propagating d.o.f. more than in vacuum GR due to dust matter

@ synchronous gauge similar to unitary gauge in Higgs mechanism:

eliminate scalars, keep (longitudinal) vector boson modes
o opposite: GW gauge (eliminate non STT gravity modes, keep scalars) more

complicated (PDEs to solve)
o Looks like highly non-linear o —model of self-interacting “matrices” qap

(b 2)*}—[det(q)]'/? (R(q)—2N)]
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Introduction and model

@ Synchronous gauge motivated by class. e.o.m. to fix first class. constr.
P=T-T., ¢ =8-8, T.=t 8, =5, x
O fixes velocities u* = 0, lapse/shift N* = Ni' = §{', solve ¢, = 0 for |, = I};
@ Physical (true, observable, gauge inv., reduced, ..) canonical pair left: (gap, p?°)
@ physical Hamiltonian acting on functional F of (gap, p?)
{H,F}:= {/ dPx h(X), F}ii, =8, .22, . W=W* N=Ny ,u=t v—v* ,w—w,
@ Result:
H=r"" [ dx[idet(@)]~"/2{(par PP~
@ Properties:
@ = Ham. constr. of Lorentzian GR at unit lapse, not constrained to vanish
@ H conservative (no explicit time dependence)
o D+1 propagating d.o.f. more than in vacuum GR due to dust matter
@ synchronous gauge similar to unitary gauge in Higgs mechanism:
eliminate scalars, keep (longitudinal) vector boson modes
o opposite: GW gauge (eliminate non STT gravity modes, keep scalars) more
complicated (PDEs to solve)
o Looks like highly non-linear o —model of self-interacting “matrices” qap
o Dust as dark matter (only grav. coupling) & natural material ref. syst.

Thomas Thiemann
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Canonical g'ion and Schwinger functions for Lorentzian QG

@ construct 1-para family of conjugate canonical pairs (motivation: later)

r
oo = [0et(@)]" Gav, P = [det(q)] " [0* — —— 4™ Gog P¥]

1+rD
{PE(x), Qiy(y)} =k 62, 65 6(x,y)
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@ construct 1-para family of conjugate canonical pairs (motivation: later)
b = b r b d
op = [det(q)]" qap, P7° = [det(q)]™" [p* — 1m0 q* qeg P
{PE(x), Qiy(y)} = r 8% 58 8(x,y)

@ New aspect: (Q, P) carry density weights (2r,1 — 2r)
@ Let 2,: time zero Weyl algebra generated by Weyl el.
W, (f,g) = € S, dPx (1% Qlytgap PE)
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Canonical g'ion and Schwinger functions for Lorentzian QG

@ construct 1-para family of conjugate canonical pairs (motivation: later)

_ r
p = [det(q)]” qab, P}ab = [det(q)] ™" [Pab BT qab Qca PCd]
{P(x), QLy(y)} = 58, &% 6(x,¥)

@ New aspect: (Q, P) carry density weights (2r,1 — 2r)
@ Let 2,: time zero Weyl algebra generated by Weyl el.
W, (f,g) = € S, dPx (1% Qlytgap PE)
@ Task 1: Find states (i.e. pos., lin., normalised functionals) w : 2, : — C

@ Proposition [aerfand, Naimark, Segall w is equivalent to GNS data (p, H, Q2) via
w(a) =< Q, p(a) Q2 >%

@ Task 2: selectw s.t. Hs.a. on X

(]

Q is cyclic (i.e. p(2l) Q dense) but not nec. eigenvector of H

O Task 3: let U(t) = e~ ™ t € R unitary group.
Show that unitary time evolution is mixing, i.e. 3 Qy € H s.t.
limr_ o <, U(=T)p2 >=< 11, Q4 > < Qp, 12 >.

Thomas Thiemann



Introduction and model
Canonical g'ion and Schwinger functions for L

9 Let QJ (1, x) := U(t) QL (x) U(—t) Heisenberg picture time evolution and
Q'[F] = [z, atdPx F2o(t,x) Q. (t, x). Then generating functional of time
ordered functions

o . Q, U(-T)T,(e! TFNHU(-T)Q >
Q. T)(e Q0 >= Jim =
i (e R == L <Q,U(—2n)Q >
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Introduction and model

Canonical g’'ion and Schwinger fu

9 Let QJ (1, x) := U(t) QL (x) U(—t) Heisenberg picture time evolution and
Q'[F] = [z, atdPx F2o(t,x) Q. (t, x). Then generating functional of time
ordered functions

- _ Q, U(-T)T,(e! TFNHU(-T)Q >
Q. /(e QFQ, >= lim =
< W= >= 1 <Q,U(—2n)Q >

@ Analytic continuation: t — is, T — iS, Fg%(s,x) := —Ff(t =is,x), A= S/N
then with Q"[Fg «] = [, dPx F2(KS, x) QL (x)

<Q, A QlFen—il g=AH —AHAQIFE N Q>

x[Fe] := lim lim
xIFe) Soh N < Q,[e-AH12NQ >
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Introduction and model
Canonical g'ion and Schwinger functions for Lorentzian QG

9 Let QJ (1, x) := U(t) QL (x) U(—t) Heisenberg picture time evolution and
Q'[F] = [z, atdPx F2o(t,x) Q. (t, x). Then generating functional of time
ordered functions

- _ Q, U(-T)T,(e! TFNHU(-T)Q >
Q. /(e QFQ, >= lim =
<t WEER o= <QU(-2n)Q>

@ Analytic continuation: t — is, T — iS, Fg%(s,x) := —Ff(t =is,x), A= S/N
then with Q"[Fg «] = [, dPx F2(KS, x) QL (x)

<Q, A QlFen—il g=AH —AHAQIFE N Q>

Fgl := lim  lim
xIFe] Soh N < Q,[e-AH12NQ >

@ Use Schrodinger class states, UV & IR cut-offs, take limits:
formal phase space PI (Liouville measure)

x[Fl = % Z[F] = / dpi[Q, P] e~ Jrxa 97T X IHIX)HPE0Qa(X)]

exp < Q, F > Q[Q(c0)]* Q[Q(—00)]

Thomas Thiemann



Canonical g'ion and Schwinger functions for Lorentzian QG

unctional of Schwinger functions

@ Proposition When integrating out the momenta, there is a non-trivial measure
Jacobean coming from the DeWitt-metric (r = 0)

1
Gapead = [det(Q)]_1/2[qa(c Qa)p — ﬁQab Qed]
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@ Proposition When integrating out the momenta, there is a non-trivial measure
Jacobean coming from the DeWitt-metric (r = 0)

1
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@ unless
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Canonical g'ion and Schwinger functions for Lorentzian QG

unctional of Schwinger functions

@ Proposition When integrating out the momenta, there is a non-trivial measure
Jacobean coming from the DeWitt-metric (r = 0)

1
Gapead = [det(Q)]_1/2[qa(c Qa)p — ﬁQab Qed]

@ unless
D—-4
4D
@ For r = rp one finds by regularisation (conformal mode) and contour arguments
generating functional of Schwinger functions

r=rp=

Z[F]
Fl =
x[F] Z10]”
ZIF] = / [0Q] e @7 X VERG@IAG@)-2N exp < Q, F > x

Q[Q(00)]* Q[Q(—00)] e 2V(a(Q(e0))=V(a(Q(=o<))]

Thomas Thiemann
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Discussion:

@ Except for Gibbons-Hawking and state dependent boundary term, integrand
equals Euclidian signature metric EH action in synchronous gauge ...
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@ No contradiction: just Wick rotat., formally Ny = 1 — Ng = i (Niedermaier et al
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@ For r = rp, formal Lebesgue measure, else measure correction
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Canonical g'ion and Schwinger functions for Lorentzian QG

functional of Schwinger functions

Discussion:

@ Except for Gibbons-Hawking and state dependent boundary term, integrand
equals Euclidian signature metric EH action in synchronous gauge ...

... despite the fact that Hamiltonian for Lorentzian signature GR
No contradiction: just Wick rotat., formally N; = 1 — Ng = i (Niedermaier et al]

Qo
Qo
@ No complex valued metrics arise because H not explicitly time dependent.
@ For r = rp, formal Lebesgue measure, else measure correction

o

Cf. ASQG field redefinitions works [Baldazzi, Falls, Ohta, Percacci, Pereira, Zinati]
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Canonical g'ion and Schwinger functions for Lorentzian QG

functional of Schwinger functions

Discussion:

@ Except for Gibbons-Hawking and state dependent boundary term, integrand
equals Euclidian signature metric EH action in synchronous gauge ...

... despite the fact that Hamiltonian for Lorentzian signature GR
No contradiction: just Wick rotat., formally N; = 1 — Ng = i (Niedermaier et al]

Qo
Qo
@ No complex valued metrics arise because H not explicitly time dependent.
@ For r = rp, formal Lebesgue measure, else measure correction

@ Cf. ASQG field redefinitions works [saidazzi, Falls, Ohta, Percacci, Pereira, Zinati]

@ Action must be written in terms of Q, including GB term

1 r

/ A2 X [det(Q)IT { KB(r) Qapey — [Ade(@)] 772 @) — 2A]),

u u_1+2r+r2D
-1~ D-1

Kade(f) — %[Qa(c Qd)b —u Qab QCd]} U =

Thomas Thiemann



ASQG renormalisation

2rage action - preparation

@ Standard steps: background field method and cut-off (2 dep. not displayed)
Z[F; Q] = / [dH] eSI0+H] g<F.H> g—3 R(H:Q)
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@ Standard steps: background field method and cut-off (2 dep. not displayed)
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@ Effective average action
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@ No gauge fixing, no ghosts: gauge reduction before g’ion, correlation functions of
Q have immediate physical meaning
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erage action - preparation

@ Standard steps: background field method and cut-off (2 dep. not displayed)
241F; 0] = [ [dH) oS10+H1 <FH> o~} AUHD
@ Effective average action
Th[Q, Q) = extre {< F,Q > —In(Z[F; Q))} — % Rk(Q; Q)
@ Wetterich identity
auTk(Q, Q) = *Tr([ka+ pi(eNe) NCH N Ee))

@ No gauge fixing, no ghosts: gauge reduction before g’ion, correlation functions of
Q have immediate physical meaning
@ Point of view of CQG:
° object of physical interest: true effective action (1-PI generating functional)
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@ Standard steps: background field method and cut-off (2 dep. not displayed)
241F; 0] = [ [dH) oS10+H1 <FH> o~} AUHD
@ Effective average action
Th[Q, Q) = extre {< F,Q > —In(Z[F; Q))} — % Rk(Q; Q)
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to find well defined E.A.
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ASQG renormalisation

erage action - preparation

@ Standard steps: background field method and cut-off (2 dep. not displayed)
241F; 0] = [ [dH) oS10+H1 <FH> o~} AUHD
@ Effective average action
Th[Q, Q) = extre {< F,Q > —In(Z[F; Q))} — % Rk(Q; Q)
@ Wetterich identity
OTH(@.Q) = ;TR +T2(Q, Q1" kAL, D))

@ No gauge fixing, no ghosts: gauge reduction before g’ion, correlation functions of
Q have immediate physical meaning
@ Point of view of CQG:
o object of physical interest: true effective action (1-PI generating functional)
@] = F4[Q; élé/:o,é:é,kzo background independent
o Naive MQ] = extrr {< F, Q> —In(Z(F))} ill defined, use Wetterich egn.
to find well defined E.A.
o In particular, want dimensionful couplings finite at k = 0
@ Question: How to choose Ry ?

Thomas Thiemann



ASQG renormalisation

els 1: Laplacians

@ Action, Hamiltonian no longer inv. wrt full Diffp, 1 (R x o), only wrt subgroup
Diffp(R x o) of time preserving diffeos (s, x) = (s, ¢(x)), ¢ € Diffp(o).
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els 1: Laplacians

@ Action, Hamiltonian no longer inv. wrt full Diffp, 1 (R x o), only wrt subgroup
Diffp(R x o) of time preserving diffeos (s, x) = (s, ¢(x)), ¢ € Diffp(o).

@ This aspect similar to Horava-Lifshitz gravity (HL-GR)
@ Classify irreducible tensor fields wrt Diffp(R x o) by type Sp(A, B, w).
9 irreps Tpi1(A, B, w) wrt Diffp, (R x o) decompose into irreps of Diffp(R x o)
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ASQG renormalisation

els 1: Laplacians

©

Action, Hamiltonian no longer inv. wrt full Diffp (R X o), only wrt subgroup
Diffp(R x o) of time preserving diffeos (s, x) = (s, ¢(x)), ¢ € Diffp(o).

This aspect similar to Horava-Lifshitz gravity (HL-GR)
Classify irreducible tensor fields wrt Diffp(R x o) by type Sp(A, B, w).
irreps Tpy1(A, B, w) wrt Diffp1(R x o) decompose into irreps of Diffp(R x o)

© 06 0 ©

General form of cut-off kernel:
Rabcd((s, x),(s',x'); Q) : Sp(0,2,w) — Sp(2,0,w), w=2r
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ASQG renormalisation

els 1: Laplacians

©

Action, Hamiltonian no longer inv. wrt full Diffp (R X o), only wrt subgroup
Diffp(R x o) of time preserving diffeos (s, x) = (s, ¢(x)), ¢ € Diffp(o).

This aspect similar to Horava-Lifshitz gravity (HL-GR)
Classify irreducible tensor fields wrt Diffp(R x o) by type Sp(A, B, w).
irreps Tpy1(A, B, w) wrt Diffp1(R x o) decompose into irreps of Diffp(R x o)

© 06 0 ©

General form of cut-off kernel:
Rabcd((s, x),(s',x'); Q) : Sp(0,2,w) — Sp(2,0,w), w=2r

Want to import heat kernel techniques developed for Tp, ¢ but how?

©

Thomas Thiemann
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© Define Gu,s = 65, Gab = Gabs Tab = [det(Q)] ™ T Qup

@ Embed E: Sp(A,B,w) — Tp(A,B,w) C Tpi1(A,B,w); [E-H]lu = 536,‘3Hab,
Restrict R: Tpy1(A, B,w) — Sp(A,B,w); [R-Tlap = 5;;55 T, and bilinear
forms on Sp, Tpy1 resp. by (M = D + 1)

"M —wl1=2w - = M —al1—2w - =
< HH >D:/ dMx get(@)' 2 5% g Hap MLy, < T, T >D+1:/ dMX der(@)' T2 ghP GV Ty, TS,
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© Define Gu,s = 65, Gab = Gabs Tab = [det(Q)] ™ T Qup

@ Embed E: Sp(A,B,w) — Tp(A,B,w) C Tpi1(A,B,w); [E-H]lu = 535,‘3Hab,
Restrict R: Tpy1(A, B,w) — Sp(A,B,w); [R-Tlap = 5;;55 T, and bilinear
forms on Sp, Tpy1 resp. by (M = D + 1)

< HH >p= [ d¥xdet@]' "2 o7 o Hyp g, < T.T >paq= [ oMx e@l' T2 g gV Ty
@ Proposition W.r.t. < .,>p, < .,. >py1 holds:

i. E is an isometric embedding, ii. R = E*, iii. Tp = E - Sp is Diffp invariant
subspace and R - E = idg,,, E - A = P, is an orthogonal projection.
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© Define gy,s = 55, Jab = Gab: Gab = [det(Q)] T Qup

@ Embed E : Sp(A,B,w) — Tp(A,B,w) C Tpy1(A, B, w); [E-H]uw = 535,‘3Hab,
Restrict R: Tpi1(A, B,w) — Sp(A,B,w); [R- Tlap = 656y T, and bilinear
forms on Sp, Tpy1 resp. by (M = D + 1)

"M —wl1=2w - = M —al1—2w - =
< HH >D:/ dMx get(@)' 2 5% g Hap MLy, < T, T >D+1:/ dMX der(@)' T2 ghP GV Ty, TS,

@ Proposition W.r.t. < .,>p, < .,. >py1 holds:
i. E is an isometric embedding, ii. R = E*, iii. Tp = E - Sp is Diffp invariant
subspace and R - E = idg,,, E - A = P, is an orthogonal projection.

0 LetAp,q =g Vz Vg be the standard, positive (hence symm.) op on Tp,1,
Zg+1 = P.Ap,1 - Pits projection and Ap = E* ~Zg+1 -E.Then Apisa
positive (hence symm.) op. on Sp
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© Define Gu,s = 65, Gab = Gabs Tab = [det(Q)] ™ T Qup

@ Embed E: Sp(A,B,w) — Tp(A,B,w) C Tpi1(A,B,w); [E-H]lu = 535,‘3Hab,
Restrict R: Tpy1(A, B,w) — Sp(A,B,w); [R-Tlap = 5;;55 T, and bilinear
forms on Sp, Tpy1 resp. by (M = D + 1)

<HH >p= [ d"x(get@)' 2" & & Hap Hig. < T.T >pyq= [ d'X ge@)' T2 50 8 Ty

@ Proposition W.r.t. < .,>p, < .,. >py1 holds:

i. E is an isometric embedding, ii. R = E*, iii. Tp = E - Sp is Diffp invariant
subspace and R - E = idg,,, E - A = P, is an orthogonal projection.

0 LetAp,q =g Vz Vg be the standard, positive (hence symm.) op on Tp,1,
Zg+1 = P.Ap,1 - Pits projection and Ap = E* ~Zg+1 -E.Then Apisa
positive (hence symm.) op. on Sp

@ There are two natural, symm. heat kernels
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@ This work: use simpler vers. 2., i.e neglect [ZD+1 , P] terms

Thomas Thiemann



ASQG renormalisation

Is 2: cut-off functions

@ Assumption[ASQG] V proposed cut-off functions Ry (z) = k2 r(z/k?), z > 03
Laplace pre-image 7 of r, i.e. r(y) = [¢° dt eV 1 (1)

Thomas Thiemann



ASQG renormalisation

els 2: cut-off functions

@ Assumption[ASQG] V proposed cut-off functions Ry (z) = k2 r(z/k?), z > 03
Laplace pre-image 7 of r, i.e. r(y) = [¢° dt eV 1 (1)
@ Corollary If 7 3 then
d 0(—

€9 R 1,N) oo
S N _ N N -
o= [ a7 0= o) (<M (MO Tt [T oy )

Thomas Thiemann



ASQG renormalisation

els 2: cut-off functions

@ Assumption[ASQG] V proposed cut-off functions Ry (z) = k2 r(z/k?), z > 03
Laplace pre-image 7 of r, i.e. r(y) = [¢° dt eV 1 (1)
@ Corollary If 7 3 then

oo R d 9(,1,N) oo B
o= [ a7 0= o) (<M (MO Tt [T oy )

@ Counter-example: r(y) = 0(1 — y) 124
By corollary: Iy = dn,0, N > 0. Stielties moment problem: uniquely 7(f) = 4(t).

By corollary: Iy = oo = ﬁ contradiction (reason: Paley-Wiener)

Thomas Thiemann



ASQG renormalisation

els 2: cut-off functions

@ Assumption[ASQG] V proposed cut-off functions Ry (z) = k2 r(z/k?), z > 03
Laplace pre-image 7 of r, i.e. r(y) = [¢° dt eV 1 (1)
@ Corollary If 7 3 then

oo R d 9(,1,N) oo B
o= [ a7 0= o) (<M (MO Tt [T oy )

@ Counter-example: r(y) = 0(1 — y) 124
By corollary: Iy = dn,0, N > 0. Stielties moment problem: uniquely 7(f) = 4(t).

By corollary: Iy = oo = ﬁ contradiction (reason: Paley-Wiener)

Thomas Thiemann



ASQG renormalisation

els 2: cut-off functions

@ Assumption[ASQG] ¥ proposed cut-off functions Ry (z) = k2 r(z/k?), z>03
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els 2: cut-off functions

@ Assumption[ASQG] ¥ proposed cut-off functions Ry (z) = k2 r(z/k?), z>03
Laplace pre-image 7 of r, i.e. r(y) = [¢° dt eV 1 (1)
@ Corollary If 7 3 then
d

., 204y tN N
In: /o dt r(t) t O(N) (—1) [(dy
@ Counter-example: r(y) = 0(1 — y) 124
By corollary: Iy = on,0, N > 0. Stielties moment problem: uniquely ?(t) = 4(t).
By corollary: Iy = co = contradiction (reason: Paley-Wiener)

,1,N oo
)+ TS [ oy )

\NI'
@ To be safe & tame sing. convol. t integrals pick ¥ smooth, rapid t = 0, co decay
@ example: #(t) = e~ [E+t 7

@ Convol. sing. heat kernel time integrals are of type (A >0, p>0n>m>1)

m n
Jp,m,n(A) == / ] a"t H P(t) e Z;;m+1 t (Z tk)—P
/10,00] k=1 k=1

@ Conv., analyt. fn. of A, computable Taylor coeff. (generalised Bessel fns.) using
Barnes factorising integral identities

—liico ¢4 r r—
(81 +82)7 P = / 4 —z. s s;[p”] rz+pr=2)
1 oo 2w I'(p)
7
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@ When computing F (C) Q) for the Wetterich egn. a new effect arises when
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Time and space der. have different coeff.: Ki(r) — Ko(r) o< r # 0 unless D = 4
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Final cut-off kernel

= = 1 —
RE(@) = " ([det(Q)IT K, E* - Ae(Bp1) - E),
2 Kabcd Qa Cod)b _ U+(r) Oabocd
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@ dimensionless couplings gk = k? K, Ak = k=2 Ak

@ Geometric series expansion
Tr([Px+ U+ Rid = [kokR]) = Sp2o (=1)" Tr(P " ([Uk+ Rl P )" [kOkRK])

O Pc=ry Ky E*-(-Dg+2N)-E
@ Ignore effects from [Ay4, E - E*] # 0 in a first step (as above)
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@ Remaning analysis standard, here for D =3,r =r3 = —;

©

dimensionless couplings gk = k? kk, Ak = k=2 Ag

©

Geometric series expansion
Tr([Px+ U+ Rid = [kokR]) = Sp2o (=1)" Tr(P " ([Uk+ Rl P )" [kOkRK])

Pi=r; "' Ki E*-(—Dg+2MN) - E

Ignore effects from [Ay, E - E*] # 0 in a first step (as above)

heat kernel representation (—&, + 2Ak) " = k2 [ dt e=2 S g5 Be/K?
Heat kernel traces for arbitrary gap S.t. gs. = 65,
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@ Remaning analysis standard, here for D =3,r =r; = —1‘—2

©

dimensionless couplings gk = k? kk, Ak = k=2 Ag

©

Geometric series expansion
Tr([Px+ U+ Rid = [kokR]) = Sp2o (=1)" Tr(P " ([Uk+ Rl P )" [kOkRK])

Pi=r; "' Ki E*-(—Dg+2MN) - E

Ignore effects from [Ay, E - E*] # 0 in a first step (as above)

heat kernel representation (—&, + 2Ak) " = k2 [ dt e=2 S g5 Be/K?
Heat kernel traces for arbitrary gap S.t. s = 6;

© 06 6 0 o

Barnes integral technology to compute (n > m > 1)
[~B4 +2A] 7= RY [k 0k R]

Thomas Thiemann



Introduction and model

rl an

ASQG renormalisation
on

@ Beta fns: non-trivial r-dependence, polynomial in g, analyt. in A




@ Beta fns: non-trivial r-dependence, polynomial in g, analyt. in A
@ UVNGFP A, =192, g. =57.41,IRGFP A, = g. =0

Thomas Thiemann



@ Beta fns: non-trivial r-dependence, polynomial in g, analyt. in A
@ UVNGFP A, =192, g. =57.41,IRGFP A, = g. =0
Q crit. exp. (A —A*, 90— g« x [%"]91/2): (61,62) = (8.01, 2.13) (NGFP) (2, -2) (GFP)

Thomas Thiemann



Beta fns: non-trivial r-dependence, polynomial in g, analyt. in A
UV NGFP A\, =192, g, =57.41,IRGFP A\, = g. =0
crit. exp. (A —A*, g — g« [%"]91/2): (61,62) = (8.01, 2.13) (NGFP) (2, -2) (GFP)

Relevant couplings, fixed point values in qualitative agreement with foliated
gravity (matter) approach [Biemanns, Korver, Manrique, Platania, Rechenberger, Saueressig, Wang] ...

(*]
(*]
(*]
(*]

Thomas Thiemann



Beta fns: non-trivial r-dependence, polynomial in g, analyt. in A
UV NGFP A\, =192, g, =57.41,IRGFP A\, = g. =0
crit. exp. (A —A*, g — g« [%0]91/2): (61,62) = (8.01, 2.13) (NGFP) (2, -2) (GFP)

Relevant couplings, fixed point values in qualitative agreement with foliated
gravity (matter) approach [Biemanns, Korver, Manrique, Platania, Rechenberger, Saueressig, Wang] ...

© 6 0 o

©

... although conceptual setup quite different: only true d.o.f. Pl (no ghosts),
different treatment of time derivatives, unitary vs STT gauge, r— dependent
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Beta fns: non-trivial r-dependence, polynomial in g, analyt. in A
UV NGFP A\, =192, g, =57.41,IRGFP A\, = g. =0
crit. exp. (A —A*, g — g« [%0]91/2): (61,62) = (8.01, 2.13) (NGFP) (2, -2) (GFP)

Relevant couplings, fixed point values in qualitative agreement with foliated
gravity (matter) approach [Biemanns, Korver, Manrique, Platania, Rechenberger, Saueressig, Wang] ...
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©

... although conceptual setup quite different: only true d.o.f. Pl (no ghosts),
different treatment of time derivatives, unitary vs STT gauge, r— dependent
density weight

@ important to CQG: existence of true E.A. T i.e. finite dimensionful couplings as
k — 0, of course depending on trajectory (relevant couplings)
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100¢ .

Flow diagramme in A\ — g plane for r; = —%2, D = 3, trajectories point to decreasing k,
all originate from UV NGFP (purple dot). Red dashed line: “curtain” (pole line of beta functions, flow
unreliable beyond). Green line: separatrix connecting UV NGFP and IR GFP (red dot).

Thomas Thiemann



duction and r

Lore

ASQG renormalisation
( on

‘ G
A A

500000 1.x107F

499970 9.9985x 1077 ¢ :
0 50 100 150 200 250 =k 50 100 150 200 250 >

Small k regime of the dimensionful cosmological constant and Newton’s
constant. Both couplings reach a finite value when k — 0. This value depends on the
initial conditions.
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ASQG and CQG methods in harmonic interaction in concrete matter model with
transparent physics

Lorentzian signature Hamiltonian and Euclidian signature action coexist without
contradiction

Relational formalism leads to different treatment of gauge invariance

First principle derivation of Pl leads to measure Jacobeans which necessarily
have non-trivial influence on flow and truncation spaces

State dependence explicitly monitored

New cut-off functions granted to be Laplace images and associated analytical
methods related to Barnes integral identities

Technical and conceptual overlap with foliated ASQG

Thomas Thiemann
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