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Introduction
Sketch: ASQG - CQG junction
Concrete model: Gaussian dust

Motivation

It is widely believed that QG must be formulated non-perturbatively

ASQG and CQG are such non-pert. programmes

However, apparently profoundly different:

signature background methods truncations
ASQG mostly Euclidian essential widely used
CQG Lorentzian absent so far dispensable

has prevented interaction btw. research fields to date

Q: Are these differences truly unsurmountable?

A: Not really, with proper adjustments understood
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Sketch: ASQG - CQG junction

To explore possible ASQG - CQG interface: formulate CQG in language of ASQG

Reminder: CQG IS QFT of QG [DeWitt,Dirac,Wheeler,..] e.g. LQG corr. to specific state

General framework in [TT, Ferrero & TT; 24]

This talk: Concrete implementation in crystal clear model

Strategy: reduced phase space (r.p.s.) formulation of Lorentzian CQG:
gauge invariance manifest, will never talk about non-observables

Construct r.p.s. path integral (PI): Euclidian QFT formulation

Integrating out momenta: necessary measure adjustments absorbed by
canonical transformation in CQG formulation

Result: Euclidian QFT of Lorentzian QG as highly non-linear σ−model

No contradiction: Lorentzian CQG and Euclidian formulation can co-exist

E.A.A. renormalisation: first steps

New technical development: tempered cut-off functions and Barnes heat kernel
time integrals
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Concrete model: Gaussian dust

Gaussian dust action [Kuchar, Torre 90’s] coupled to D + 1 dim Lorentzian GR
(µ, ν = 0, ..,D)

LGD = −| det(g)|1/2 [
ρ

2
(gµν T,µ T,ν + 1) + gµν T,µ (Wj Sj

,ν)]

2 x (1+D) minimally coupled scalar fields (T , ρ), (Sj , Wj ), j = 1, ..,D

perfectly generally covariant

classical physics (Euler-Lagrange eqns.):

Uµ = ∇µT : unit timelike geodesic co-tangent ⊥ to Sj =const. lines
pressureless p = D−1[Uµ Uν + gµν ] Tµν = 0
interpretation: collision free, synchronised geodesic observer congruence
labelled by Sj , proper time T coupled to GR (backreaction)
comes as close as possible to idealisation of test particles
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Introduction
Sketch: ASQG - CQG junction
Concrete model: Gaussian dust

classical Hamiltonian formulation M ∼= R× σ [Giesel, TT 10’s]

k = D(D+1)/2 + 3 (D+1) canonical pairs (a, b, c, .. = 1, ..,D):
(qab, pab), (Nµ, πµ), (T , I), (Sj , Ij ), (ρ,Z ), (Wj ,Z j )

Legendre transf. sing.: 2 x (D+1) + (D-1) velocities uµ, v , vj ,wA of
Nµ, ρ,Wj ,SA; A = 1, , .,D − 1 not solvable for

Dirac’s constraint analysis:

2 x (D+1) + (D-1) primary constraints
πµ = Z = Z j = ζA = WD IA −WAID = 0
primary Hamiltonian

h = uµ πµ + v Z + vj Z j + wA ζA + Nµ cµ

(D+1) + 2 secondary constraints cµ = ζ = ζD = 0; 2 x D velocities
v = v∗, vj = v∗j ,w

A = wA
∗ fixed

f = 2 x (D+1) first class constr.: πµ, cµ,
s= 2 x (D+1) second class constr. Z ,Zj , ζ, ζj
physical canonical pair counting: k-f-s/2=D(D+1)/2
Dirac bracket: eliminates 2nd class constr. and canonical pairs
(ρ,Z ), (Wj ,Z j )

Thomas Thiemann ASQG & CQG
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s= 2 x (D+1) second class constr. Z ,Zj , ζ, ζj
physical canonical pair counting: k-f-s/2=D(D+1)/2
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Introduction
Sketch: ASQG - CQG junction
Concrete model: Gaussian dust

Synchronous gauge motivated by class. e.o.m. to fix first class. constr.

g0 = T − T∗, g j = Sj − Sj
∗, T∗ = t , Sj

∗ = δ
j
a xa

fixes velocities uµ = 0, lapse/shift Nµ = Nµ∗ = δµt , solve cµ = 0 for Iµ = I∗µ
Physical (true, observable, gauge inv., reduced, ..) canonical pair left: (qab, pab)

physical Hamiltonian acting on functional F of (qab, pab)

{H,F} := {
∫
σ

dDx h(x), F}I=I∗,S=S∗,Z=Z∗,W =W∗,N=N∗,u=u∗,v=v∗,w=w∗

Result:

H = κ−1
∫
σ

dDx [[det(q)]−1/2{(pab pab)2−
1

D − 1
(pa

a)2}−[det(q)]1/2 (R(q)−2Λ)]

Properties:
= Ham. constr. of Lorentzian GR at unit lapse, not constrained to vanish
H conservative (no explicit time dependence)
D+1 propagating d.o.f. more than in vacuum GR due to dust matter
synchronous gauge similar to unitary gauge in Higgs mechanism:
eliminate scalars, keep (longitudinal) vector boson modes
opposite: GW gauge (eliminate non STT gravity modes, keep scalars) more
complicated (PDEs to solve)
Looks like highly non-linear σ−model of self-interacting “matrices” qab
Dust as dark matter (only grav. coupling) & natural material ref. syst.
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D+1 propagating d.o.f. more than in vacuum GR due to dust matter
synchronous gauge similar to unitary gauge in Higgs mechanism:
eliminate scalars, keep (longitudinal) vector boson modes
opposite: GW gauge (eliminate non STT gravity modes, keep scalars) more
complicated (PDEs to solve)
Looks like highly non-linear σ−model of self-interacting “matrices” qab
Dust as dark matter (only grav. coupling) & natural material ref. syst.
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Canonical qantisation
Generating functional of Schwinger functions

Canonical quantisation

construct 1-para family of conjugate canonical pairs (motivation: later)

Qr
ab = [det(q)]r qab, Pab

r = [det(q)]−r [pab −
r

1 + rD
qab qcd pcd ]

{Pab
r (x), Qr

cd (y)} = κ δa
(c δ

b
d) δ(x , y)

New aspect: (Q,P) carry density weights (2r , 1− 2r)

Let Ar : time zero Weyl algebra generated by Weyl el.
Wr (f , g) = ei

∫
σ dDx [f ab Qr

ab+gab Pab
r ]

Task 1: Find states (i.e. pos., lin., normalised functionals) ω : Ar :→ C

Proposition [Gel’fand, Naimark, Segal] ω is equivalent to GNS data (ρ,H,Ω) via
ω(a) =< Ω, ρ(a) Ω >H

Task 2: select ω s.t. H s.a. on H
Ω is cyclic (i.e. ρ(A) Ω dense) but not nec. eigenvector of H

Task 3: let U(t) = e−itH , t ∈ R unitary group.
Show that unitary time evolution is mixing, i.e. ∃ ΩH ∈ H s.t.
limT→∞ < ψ1, U(−T )ψ2 >=< ψ1,ΩH > < ΩH , ψ2 >.
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Canonical qantisation
Generating functional of Schwinger functions

Let Qr
ab(t , x) := U(t) Qr

ab(x) U(−t) Heisenberg picture time evolution and
Qr [FL] :=

∫
R×σ dt dDx F ab

L (t , x) Qr
ab(t , x). Then generating functional of time

ordered functions

< ΩH , Tl (ei Qr [FL])ΩH >= lim
T→∞

< Ω, U(−T )Tl (ei Qr [FL])U(−T )Ω >

< Ω,U(−2T )Ω >

Analytic continuation: t → is, T → iS, F ab
E (s, x) := −F ab

L (t = is, x), ∆ = S/N
then with Qr [FE,k ] =

∫
σ dDx F ab

E ( k
N S, x) Qr

ab(x)

χ[FE ] := lim
S→∞

lim
N→∞

< Ω, e∆ Qr [FE,N−1] e−∆ H ..−∆ H e∆ Qr [FE,−N ] Ω >

< Ω, [e−∆ H ]2N Ω >

Use Schrödinger class states, UV & IR cut-offs, take limits:
formal phase space PI (Liouville measure)

χ[F ] =
Z [F ]

Z [0]
, Z [F ] =

∫
dµL[Q,P] e−

∫
R×σ dD+1X [H(X)+iPab(X)Q̇ab(X)] ×

exp< Q,F > Ω[Q(∞)]∗ Ω[Q(−∞)]

Thomas Thiemann ASQG & CQG
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Generating functional of Schwinger functions

Proposition When integrating out the momenta, there is a non-trivial measure
Jacobean coming from the DeWitt-metric (r = 0)

Gabcd = [det(q)]−1/2[qa(c qd)b −
1

D − 1
qab qcd ]

unless
r = rD =

D − 4
4D

For r = rD one finds by regularisation (conformal mode) and contour arguments
generating functional of Schwinger functions

χ[F ] =
Z [F ]

Z [0]
,

Z [F ] =

∫
[dQ] eκ

−1 ∫
M dD+1X

√
det(g(Q))[R(g(Q))−2Λ] exp< Q,F > ×

Ω[Q(∞)]∗ Ω[Q(−∞)] e−2[V̇ (q(Q(∞)))−V̇ (q(Q(−∞)))]

Thomas Thiemann ASQG & CQG
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Generating functional of Schwinger functions

Discussion:

Except for Gibbons-Hawking and state dependent boundary term, integrand
equals Euclidian signature metric EH action in synchronous gauge ...

... despite the fact that Hamiltonian for Lorentzian signature GR

No contradiction: just Wick rotat., formally NL = 1→ NE = i [Niedermaier et al]

No complex valued metrics arise because H not explicitly time dependent.

For r = rD , formal Lebesgue measure, else measure correction

Cf. ASQG field redefinitions works [Baldazzi, Falls, Ohta, Percacci, Pereira, Zinati]

Action must be written in terms of Q, including GB term∫
dD+1X [det(Q)]

1
2(1+rD) {

1
2

K abcd (r) Q̇abQ̇cd − [R([det(Q)]−
r

1+rD Q)− 2Λ]},

K abcd (r) =
1
2

[Qa(c Qd)b − u′ Qab Qcd ], u′ =
u

uD − 1
, u =

1 + 2r + r2 D
D − 1

Thomas Thiemann ASQG & CQG
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Effective average action - preparation
Cut-off kernels 1: Laplacians
Cut-off kernels 2: cut-off functions
Cut-off kernels 3: tensor structure
EH truncation flow

Effective average action - preparation
Standard steps: background field method and cut-off (Ω dep. not displayed)

Z̄k [F ; Q̄] =

∫
[dH] eS[Q̄+H] e<F ,H> e−

1
2 Rk (H;Q̄)

Effective average action

Γ̄k [Q̂, Q̄] = extrF {< F , Q̂ > − ln(Z̄k [F ; Q̄])} −
1
2

Rk (Q̂; Q̄)

Wetterich identity

∂k Γ̄k (Q̂, Q̄) =
1
2

Tr([Rk + Γ̄
(2)
k (Q̂, Q̄)]−1 [∂k Rk (., Q̄)])

No gauge fixing, no ghosts: gauge reduction before q’ion, correlation functions of
Q̂ have immediate physical meaning
Point of view of CQG:

object of physical interest: true effective action (1-PI generating functional)
Γ[Q̂] := Γ̄k [Q̂′; Q̄]Q̂′=0,Q̄=Q̂,k=0 background independent

Naive Γ[Q̂] = extrF {< F , Q̂ > − ln(Z (F ))} ill defined, use Wetterich eqn.
to find well defined E.A.
In particular, want dimensionful couplings finite at k = 0

Question: How to choose Rk ?
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Cut-off kernels 1: Laplacians

Action, Hamiltonian no longer inv. wrt full DiffD+1(R× σ), only wrt subgroup
DiffD(R× σ) of time preserving diffeos Φ(s, x) = (s, ϕ(x)), ϕ ∈ DiffD(σ).

This aspect similar to Horava-Lifshitz gravity (HL-GR)

Classify irreducible tensor fields wrt DiffD(R× σ) by type SD(A,B,w).

irreps TD+1(A,B,w) wrt DiffD+1(R× σ) decompose into irreps of DiffD(R× σ)

General form of cut-off kernel:
Rabcd

k ((s, x), (s′, x ′); Q̄) : SD(0, 2,w)→ SD(2, 0,w), w = 2r

Want to import heat kernel techniques developed for TD+1 but how?

Thomas Thiemann ASQG & CQG
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Define ḡµ,s = δs
µ, ḡab = q̄ab, q̄ab := [det(Q̄)]−

r
1+rD Q̄ab

Embed E : SD(A,B,w)→ TD(A,B,w) ⊂ TD+1(A,B,w); [E · H]µν = δa
µδ

b
νHab ,

Restrict R : TD+1(A,B,w)→ SD(A,B,w); [R · T ]ab = δµa δ
ν
b Tµν and bilinear

forms on SD ,TD+1 resp. by (M = D + 1)

< H, H′ >D =

∫
dM X [det(q̄)]1−2w q̄ac q̄bd Hab H′cd , < T , T ′ >D+1=

∫
dM X [det(ḡ)]1−2w ḡµρ ḡνσ Tµν T ′ρσ

Proposition W.r.t. < .,>D , < ., . >D+1 holds:
i. E is an isometric embedding, ii. R = E∗, iii. TD = E · SD is DiffD invariant
subspace and R · E = idSD

, E · R = PTD is an orthogonal projection.

Let ∆D+1 = ḡµν ∇ḡ
µ ∇ḡ

ν be the standard, positive (hence symm.) op on TD+1,

∆
P
D+1 = P ·∆D+1 · P its projection and ∆D = E∗ ·∆P

D+1 · E . Then ∆D is a
positive (hence symm.) op. on SD

There are two natural, symm. heat kernels

1. et ∆D = E∗ · et ∆
P
D+1 · E and 2. E∗ · et ∆D+1 · E

Version 1 more complicated, can be perturbatively related to et ∆D+1 using
S-matrix theory and non-minimal ops [Benedetti, Groh, Saueressig et al]

ASQG technology for HL-GR could help [Contillo, Goossens, Rechenberger, Saueressig ...]

This work: use simpler vers. 2., i.e neglect [∆D+1,P] terms

Thomas Thiemann ASQG & CQG
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Proposition W.r.t. < .,>D , < ., . >D+1 holds:
i. E is an isometric embedding, ii. R = E∗, iii. TD = E · SD is DiffD invariant
subspace and R · E = idSD

, E · R = PTD is an orthogonal projection.

Let ∆D+1 = ḡµν ∇ḡ
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Cut-off kernels 2: cut-off functions
Assumption[ASQG] ∀ proposed cut-off functions Rk (z) = k2 r(z/k2), z ≥ 0 ∃
Laplace pre-image r̂ of r , i.e. r(y) =

∫∞
0 dt e−y t r̂(t)

Corollary If r̂ ∃ then

IN :=

∫ ∞
0

dt r̂(t) tN = θ(N) (−1)N [(
d
dy

)N r ](0)+
θ(− 1

2 − N)

(|N| − 1)!

∫ ∞
0

dy y |N|−1 r(y)

Counter-example: r(y) = θ(1− y) [TT 24]

By corollary: IN = δN,0,N ≥ 0. Stieltjes moment problem: uniquely r̂(t) = δ(t).
By corollary: IN =∞ = 1

|N|! contradiction (reason: Paley-Wiener)

To be safe & tame sing. convol. t integrals pick r̂ smooth, rapid t = 0,∞ decay

example: r̂(t) = e−[t2+t−2]

Convol. sing. heat kernel time integrals are of type (λ > 0, p > 0 n ≥ m ≥ 1)

Jp,m,n(λ) :=

∫
[0,∞]n

dnt
m∏

k=1

r̂(tk ) e−λ
∑n

l=m+1 tl (
n∑

k=1

tk )−p

Conv., analyt. fn. of λ, computable Taylor coeff. (generalised Bessel fns.) using
Barnes factorising integral identities

(s1 + s2)−p =

∫ − 1
4 +i∞

− 1
4−i∞

dz
2π i

sz
1 s−[p+z]

2
Γ(z + p)Γ(−z)

Γ(p)
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Cut-off kernels 3: tensor structure

When computing Γ̄
(2)
k (Q̂, Q̄) for the Wetterich eqn. a new effect arises when

r 6= 0, structurally

< H, [Γ̄
(2)
k (Q̂, Q̄)]Q̂=0· H >D=< H, {K1(r)·[−∂2

s ]+K2(r)·[∆D+∂2
s +2Λk ]+Uk}·H >D

Uk : non-minimal terms

Time and space der. have different coeff.: K1(r)− K2(r) ∝ r 6= 0 unless D = 4

Physically correct effect of taking the De-Witt metric Jacobean into account

Honest treatment requires to go beyond EH-truncation theory space

Ad hoc treatment: Define K±(r) = 1
2 [K1(r)± K2(r)], replace K1,K2 by K+

Could be interpreted as “integral part of EH truncation procedure”

Final cut-off kernel

Rabcd
k (Q̄) = κ−1

k ([det(Q̄)]
1

2(1+rD) K+ E∗ · Rk (∆D+1) · E)abcd ,

2 K abcd
+ = Q̄a(cQ̄d)b − u+(r) Q̄abQ̄cd
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EH truncation flow

Remaning analysis standard, here for D = 3, r = r3 = − 1
12

dimensionless couplings gk = k2 κk , λk = k−2 Λk

Geometric series expansion
Tr([Pk +Uk +Rk ]−1 [k∂k Rk ]) =

∑∞
n=0 (−1)n Tr(P−1

k ([Uk +Rk ] P−1
k )n [k∂k Rk ])

Pk = κ−1
k K+ · E∗ · (−∆4 + 2Λk ) · E

Ignore effects from [∆4,E · E∗] 6= 0 in a first step (as above)

heat kernel representation (−∆4 + 2Λk )−1 = k2 ∫∞
0 dt e−2λk s es ∆4/k2

Heat kernel traces for arbitrary ḡab s.t. ḡsµ = δs
µ

Barnes integral technology to compute (n > m ≥ 1)
[−∆4 + 2Λk ]−[n−m] Rm−1

k [k ∂k Rk ]

Thomas Thiemann ASQG & CQG
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Effective average action - preparation
Cut-off kernels 1: Laplacians
Cut-off kernels 2: cut-off functions
Cut-off kernels 3: tensor structure
EH truncation flow

Beta fns: non-trivial r-dependence, polynomial in g, analyt. in λ

UV NGFP λ∗ = 1.92, g∗ = 57.41, IR GFP λ∗ = g∗ = 0

crit. exp. (λ−λ∗, g− g∗ ∝ [
k0
k ]θ1/2 ): (θ1, θ2) = (8.01, 2.13) (NGFP) (2, -2) (GFP)

Relevant couplings, fixed point values in qualitative agreement with foliated
gravity (matter) approach [Biemanns, Korver, Manrique, Platania, Rechenberger, Saueressig, Wang] ...

... although conceptual setup quite different: only true d.o.f. PI (no ghosts),
different treatment of time derivatives, unitary vs STT gauge, r− dependent
density weight

important to CQG: existence of true E.A. Γ i.e. finite dimensionful couplings as
k → 0, of course depending on trajectory (relevant couplings)
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Figure: Flow diagramme in λ − g plane for r3 = − 1
12 , D = 3, trajectories point to decreasing k ,

all originate from UV NGFP (purple dot). Red dashed line: “curtain” (pole line of beta functions, flow

unreliable beyond). Green line: separatrix connecting UV NGFP and IR GFP (red dot).
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Figure: Small k regime of the dimensionful cosmological constant and Newton’s
constant. Both couplings reach a finite value when k → 0. This value depends on the
initial conditions.
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Conclusion

ASQG and CQG methods in harmonic interaction in concrete matter model with
transparent physics

Lorentzian signature Hamiltonian and Euclidian signature action coexist without
contradiction

Relational formalism leads to different treatment of gauge invariance

First principle derivation of PI leads to measure Jacobeans which necessarily
have non-trivial influence on flow and truncation spaces

State dependence explicitly monitored

New cut-off functions granted to be Laplace images and associated analytical
methods related to Barnes integral identities

Technical and conceptual overlap with foliated ASQG
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