Asymptotically safe - canonical quantum gravity junction

Thomas Thiemann¹

¹ Inst. f. Quantengravitation (IQG), FAU Erlangen - Nürnberg

Q'um ST & renormalisation group, workshop, Heidelberg, 31.03.2025

arXiv [hep-th]: 2503.22474, joint work w. Renata Ferrero

Thomas Thiemann

ASQG & CQG

TOC:

Introduction and model

- Canonical q'ion and Schwinger functions for Lorentzian QG
- ASQG renormalisation
- Conclusion

TOC:

- Introduction and model
- Canonical q'ion and Schwinger functions for Lorentzian QG
- ASQG renormalisation
- Conclusion

TOC:

- Introduction and model
- Canonical q'ion and Schwinger functions for Lorentzian QG
- ASQG renormalisation
- Conclusion

TOC:

- Introduction and model
- Canonical q'ion and Schwinger functions for Lorentzian QG
- ASQG renormalisation
- Conclusion

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

Motivation

It is widely believed that QG must be formulated non-perturbatively

- ASQG and CQG are such non-pert. programmes
- However, apparently profoundly different.

		truncations
ASQG		
CQG	absent	

- has prevented interaction btw. research fields to date
- Q: Are these differences truly unsurmountable?
- A: Not really, with proper adjustments understood

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- It is widely believed that QG must be formulated non-perturbatively
- ASQG and CQG are such non-pert. programmes
- However, apparently profoundly different:

		truncations
ASQG		
CQG	absent	

- has prevented interaction btw. research fields to date
- Q: Are these differences truly unsurmountable?
- A: Not really, with proper adjustments understood

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- It is widely believed that QG must be formulated non-perturbatively
- ASQG and CQG are such non-pert. programmes
- However, apparently profoundly different:

	signature	background methods	truncations
ASQG	mostly Euclidian	essential	widely used
CQG	Lorentzian	absent	so far dispensable

- has prevented interaction btw. research fields to date
- Q: Are these differences truly unsurmountable?
- A: Not really, with proper adjustments understood

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- It is widely believed that QG must be formulated non-perturbatively
- ASQG and CQG are such non-pert. programmes
- However, apparently profoundly different:

	signature	background methods	truncations
ASQG	mostly Euclidian	essential	widely used
CQG	Lorentzian	absent	so far dispensable

- has prevented interaction btw. research fields to date
- Q: Are these differences truly unsurmountable?
- A: Not really, with proper adjustments understood

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- It is widely believed that QG must be formulated non-perturbatively
- ASQG and CQG are such non-pert. programmes
- However, apparently profoundly different:

	signature	background methods	truncations
ASQG	mostly Euclidian	essential	widely used
CQG	Lorentzian	absent	so far dispensable

- has prevented interaction btw. research fields to date
- Q: Are these differences truly unsurmountable?
- A: Not really, with proper adjustments understood

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- It is widely believed that QG must be formulated non-perturbatively
- ASQG and CQG are such non-pert. programmes
- However, apparently profoundly different:

	signature	background methods	truncations
ASQG	mostly Euclidian	essential	widely used
CQG	Lorentzian	absent	so far dispensable

- has prevented interaction btw. research fields to date
- Q: Are these differences truly unsurmountable?
- A: Not really, with proper adjustments understood

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

Sketch: ASQG - CQG junction

• To explore possible ASQG - CQG interface: formulate CQG in language of ASQG

- Reminder: CQG IS QFT of QG [DeWitt,Dirac,Wheeler,...] e.g. LQG corr. to specific state
- General framework in [TT, Ferrero & TT; 24]
- This talk: Concrete implementation in crystal clear model
- Strategy: reduced phase space (r.p.s.) formulation of Lorentzian CQG: gauge invariance manifest, will never talk about non-observables
- Construct r.p.s. path integral (PI): Euclidian QFT formulation
- Integrating out momenta: necessary measure adjustments absorbed by canonical transformation in CQG formulation
- Result: Euclidian QFT of Lorentzian QG as highly non-linear σ -model
- No contradiction: Lorentzian CQG and Euclidian formulation can co-exist
- E.A.A. renormalisation: first steps
- New technical development: tempered cut-off functions and Barnes heat kernel time integrals

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- To explore possible ASQG CQG interface: formulate CQG in language of ASQG
- Reminder: CQG IS QFT of QG [DeWitt,Dirac,Wheeler,..] e.g. LQG corr. to specific state
- General framework in [TT, Ferrero & TT; 24]
- This talk: Concrete implementation in crystal clear model
- Strategy: reduced phase space (r.p.s.) formulation of Lorentzian CQG: gauge invariance manifest, will never talk about non-observables
- Construct r.p.s. path integral (PI): Euclidian QFT formulation
- Integrating out momenta: necessary measure adjustments absorbed by canonical transformation in CQG formulation
- Result: Euclidian QFT of Lorentzian QG as highly non-linear σ -model
- No contradiction: Lorentzian CQG and Euclidian formulation can co-exist
- E.A.A. renormalisation: first steps
- New technical development: tempered cut-off functions and Barnes heat kernel time integrals

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- To explore possible ASQG CQG interface: formulate CQG in language of ASQG
- Reminder: CQG IS QFT of QG [DeWitt,Dirac,Wheeler,..] e.g. LQG corr. to specific state
- General framework in [TT, Ferrero & TT; 24]
- This talk: Concrete implementation in crystal clear model
- Strategy: reduced phase space (r.p.s.) formulation of Lorentzian CQG: gauge invariance manifest, will never talk about non-observables
- Construct r.p.s. path integral (PI): Euclidian QFT formulation
- Integrating out momenta: necessary measure adjustments absorbed by canonical transformation in CQG formulation
- Result: Euclidian QFT of Lorentzian QG as highly non-linear σ -model
- No contradiction: Lorentzian CQG and Euclidian formulation can co-exist
- E.A.A. renormalisation: first steps
- New technical development: tempered cut-off functions and Barnes heat kernel time integrals

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- To explore possible ASQG CQG interface: formulate CQG in language of ASQG
- Reminder: CQG IS QFT of QG [DeWitt,Dirac,Wheeler,..] e.g. LQG corr. to specific state
- General framework in [TT, Ferrero & TT; 24]
- This talk: Concrete implementation in crystal clear model
- Strategy: reduced phase space (r.p.s.) formulation of Lorentzian CQG: gauge invariance manifest, will never talk about non-observables
- Construct r.p.s. path integral (PI): Euclidian QFT formulation
- Integrating out momenta: necessary measure adjustments absorbed by canonical transformation in CQG formulation
- Result: Euclidian QFT of Lorentzian QG as highly non-linear σ -model
- No contradiction: Lorentzian CQG and Euclidian formulation can co-exist
- E.A.A. renormalisation: first steps
- New technical development: tempered cut-off functions and Barnes heat kernel time integrals

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- To explore possible ASQG CQG interface: formulate CQG in language of ASQG
- Reminder: CQG IS QFT of QG [DeWitt,Dirac,Wheeler,..] e.g. LQG corr. to specific state
- General framework in [TT, Ferrero & TT; 24]
- This talk: Concrete implementation in crystal clear model
- Strategy: reduced phase space (r.p.s.) formulation of Lorentzian CQG: gauge invariance manifest, will never talk about non-observables
- Construct r.p.s. path integral (PI): Euclidian QFT formulation
- Integrating out momenta: necessary measure adjustments absorbed by canonical transformation in CQG formulation
- Result: Euclidian QFT of Lorentzian QG as highly non-linear σ -model
- No contradiction: Lorentzian CQG and Euclidian formulation can co-exist
- E.A.A. renormalisation: first steps
- New technical development: tempered cut-off functions and Barnes heat kernel time integrals

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- To explore possible ASQG CQG interface: formulate CQG in language of ASQG
- Reminder: CQG IS QFT of QG [DeWitt,Dirac,Wheeler,..] e.g. LQG corr. to specific state
- General framework in [TT, Ferrero & TT; 24]
- This talk: Concrete implementation in crystal clear model
- Strategy: reduced phase space (r.p.s.) formulation of Lorentzian CQG: gauge invariance manifest, will never talk about non-observables
- Construct r.p.s. path integral (PI): Euclidian QFT formulation
- Integrating out momenta: necessary measure adjustments absorbed by canonical transformation in CQG formulation
- Result: Euclidian QFT of Lorentzian QG as highly non-linear σ -model
- No contradiction: Lorentzian CQG and Euclidian formulation can co-exist
- E.A.A. renormalisation: first steps
- New technical development: tempered cut-off functions and Barnes heat kernel time integrals

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- To explore possible ASQG CQG interface: formulate CQG in language of ASQG
- Reminder: CQG IS QFT of QG [DeWitt,Dirac,Wheeler,..] e.g. LQG corr. to specific state
- General framework in [TT, Ferrero & TT; 24]
- This talk: Concrete implementation in crystal clear model
- Strategy: reduced phase space (r.p.s.) formulation of Lorentzian CQG: gauge invariance manifest, will never talk about non-observables
- Construct r.p.s. path integral (PI): Euclidian QFT formulation
- Integrating out momenta: necessary measure adjustments absorbed by canonical transformation in CQG formulation
- Result: Euclidian QFT of Lorentzian QG as highly non-linear σ -model
- No contradiction: Lorentzian CQG and Euclidian formulation can co-exist
- E.A.A. renormalisation: first steps
- New technical development: tempered cut-off functions and Barnes heat kernel time integrals

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- To explore possible ASQG CQG interface: formulate CQG in language of ASQG
- Reminder: CQG IS QFT of QG [DeWitt,Dirac,Wheeler,..] e.g. LQG corr. to specific state
- General framework in [TT, Ferrero & TT; 24]
- This talk: Concrete implementation in crystal clear model
- Strategy: reduced phase space (r.p.s.) formulation of Lorentzian CQG: gauge invariance manifest, will never talk about non-observables
- Construct r.p.s. path integral (PI): Euclidian QFT formulation
- Integrating out momenta: necessary measure adjustments absorbed by canonical transformation in CQG formulation
- Result: Euclidian QFT of Lorentzian QG as highly non-linear σ -model
- No contradiction: Lorentzian CQG and Euclidian formulation can co-exist
- E.A.A. renormalisation: first steps
- New technical development: tempered cut-off functions and Barnes heat kernel time integrals

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- To explore possible ASQG CQG interface: formulate CQG in language of ASQG
- Reminder: CQG IS QFT of QG [DeWitt,Dirac,Wheeler,..] e.g. LQG corr. to specific state
- General framework in [TT, Ferrero & TT; 24]
- This talk: Concrete implementation in crystal clear model
- Strategy: reduced phase space (r.p.s.) formulation of Lorentzian CQG: gauge invariance manifest, will never talk about non-observables
- Construct r.p.s. path integral (PI): Euclidian QFT formulation
- Integrating out momenta: necessary measure adjustments absorbed by canonical transformation in CQG formulation
- Result: Euclidian QFT of Lorentzian QG as highly non-linear σ -model
- No contradiction: Lorentzian CQG and Euclidian formulation can co-exist
- E.A.A. renormalisation: first steps
- New technical development: tempered cut-off functions and Barnes heat kernel time integrals

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- To explore possible ASQG CQG interface: formulate CQG in language of ASQG
- Reminder: CQG IS QFT of QG [DeWitt,Dirac,Wheeler,..] e.g. LQG corr. to specific state
- General framework in [TT, Ferrero & TT; 24]
- This talk: Concrete implementation in crystal clear model
- Strategy: reduced phase space (r.p.s.) formulation of Lorentzian CQG: gauge invariance manifest, will never talk about non-observables
- Construct r.p.s. path integral (PI): Euclidian QFT formulation
- Integrating out momenta: necessary measure adjustments absorbed by canonical transformation in CQG formulation
- Result: Euclidian QFT of Lorentzian QG as highly non-linear σ -model
- No contradiction: Lorentzian CQG and Euclidian formulation can co-exist
- E.A.A. renormalisation: first steps
- New technical development: tempered cut-off functions and Barnes heat kernel time integrals

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- To explore possible ASQG CQG interface: formulate CQG in language of ASQG
- Reminder: CQG IS QFT of QG [DeWitt,Dirac,Wheeler,..] e.g. LQG corr. to specific state
- General framework in [TT, Ferrero & TT; 24]
- This talk: Concrete implementation in crystal clear model
- Strategy: reduced phase space (r.p.s.) formulation of Lorentzian CQG: gauge invariance manifest, will never talk about non-observables
- Construct r.p.s. path integral (PI): Euclidian QFT formulation
- Integrating out momenta: necessary measure adjustments absorbed by canonical transformation in CQG formulation
- Result: Euclidian QFT of Lorentzian QG as highly non-linear σ -model
- No contradiction: Lorentzian CQG and Euclidian formulation can co-exist
- E.A.A. renormalisation: first steps
- New technical development: tempered cut-off functions and Barnes heat kernel time integrals

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

Concrete model: Gaussian dust

$$L_{GD} = - |\det(g)|^{1/2} \left[rac{
ho}{2} \left(g^{\mu
u} \ T_{,\mu} \ T_{,
u} + 1
ight) + g^{\mu
u} \ T_{,\mu} \ (W_j \ S_{,
u}^j)
ight]$$

- 2 x (1+D) minimally coupled scalar fields (T, ρ) , (S^{j}, W_{j}) , j = 1, .., D
- perfectly generally covariant
- classical physics (Euler-Lagrange eqns.):
 - $U_{\mu} = \nabla_{\mu} T$: unit timelike geodesic co-tangent \bot to S' =const. lines
 - pressureless $p = D^{-1}[U_{\mu} \ U_{\nu} + g_{\mu\nu}] \ T^{\mu\nu} = 0$
 - interpretation: collision free, synchronised geodesic observer congruence labelled by Sⁱ, proper time T coupled to GR (backreaction)
 - comes as close as possible to idealisation of test particles

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

Concrete model: Gaussian dust

$$L_{GD} = - |\det(g)|^{1/2} \left[rac{
ho}{2} \left(g^{\mu
u} \ T_{,\mu} \ T_{,
u} + 1
ight) + g^{\mu
u} \ T_{,\mu} \ (W_j \ S_{,
u}^j)
ight]$$

- 2 x (1+D) minimally coupled scalar fields (T, ρ) , (S^{j}, W_{j}) , j = 1, .., D
- perfectly generally covariant
- classical physics (Euler-Lagrange eqns.):
 - $U_{\mu} =
 abla_{\mu} T$: unit timelike geodesic co-tangent \perp to S' =const. lines
 - pressureless $p = D^{-1}[U_{\mu} \ U_{\nu} + g_{\mu\nu}] \ T^{\mu\nu} = 0$
 - interpretation: collision free, synchronised geodesic observer congruence labelled by S^I, proper time T coupled to GR (backreaction)
 - comes as close as possible to idealisation of test particles

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

Concrete model: Gaussian dust

• Gaussian dust action [Kuchar, Torre 90's] coupled to D + 1 dim Lorentzian GR $(\mu, \nu = 0, .., D)$

$$L_{GD} = - |\det(g)|^{1/2} \left[rac{
ho}{2} \left(g^{\mu
u} \ T_{,\mu} \ T_{,
u} + 1
ight) + g^{\mu
u} \ T_{,\mu} \ (W_j \ S_{,
u}^j)
ight]$$

- 2 x (1+D) minimally coupled scalar fields (T, ρ) , (S^{j}, W_{j}) , j = 1, .., D
- perfectly generally covariant
- classical physics (Euler-Lagrange eqns.):

U_μ = ∇_μT: unit timelike geodesic co-tangent ⊥ to S^I = const. lines
 pressureless p = D⁻¹[U_μ U_ν + g_{μν}] T^{μν} = 0
 interpretation: collision free, synchronised geodesic observer congruence labelled by S^I, proper time T coupled to GR (backreaction)
 comes as close as possible to idealisation of test particles

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

Concrete model: Gaussian dust

$$L_{GD} = - |\det(g)|^{1/2} \left[rac{
ho}{2} \left(g^{\mu
u} \ T_{,\mu} \ T_{,
u} + 1
ight) + g^{\mu
u} \ T_{,\mu} \ (W_j \ S^j_{,
u})
ight]$$

- 2 x (1+D) minimally coupled scalar fields (T, ρ) , (S^{j}, W_{j}) , j = 1, .., D
- perfectly generally covariant
- classical physics (Euler-Lagrange eqns.):
 - $U_{\mu} = \nabla_{\mu} T$: unit timelike geodesic co-tangent \perp to S^{j} =const. lines
 - ullet pressureless $ho=D^{-1}[U_{\mu}\,\,U_{
 u}+g_{\mu
 u}]\,\,T^{\mu
 u}=0$
 - interpretation: collision free, synchronised geodesic observer congruence labelled by Sⁱ, proper time T coupled to GR (backreaction)
 - comes as close as possible to idealisation of test particles

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

Concrete model: Gaussian dust

$$L_{GD} = - |\det(g)|^{1/2} \left[rac{
ho}{2} \left(g^{\mu
u} \ T_{,\mu} \ T_{,
u} + 1
ight) + g^{\mu
u} \ T_{,\mu} \ (W_j \ S^j_{,
u})
ight]$$

- 2 x (1+D) minimally coupled scalar fields $(T, \rho), (S^{j}, W_{j}), j = 1, .., D$
- perfectly generally covariant
- classical physics (Euler-Lagrange eqns.):
 - $U_{\mu} = \nabla_{\mu} T$: unit timelike geodesic co-tangent \perp to S^{j} =const. lines
 - pressureless $p = D^{-1}[U_{\mu} \ U_{\nu} + g_{\mu\nu}] \ T^{\mu\nu} = 0$
 - interpretation: collision free, synchronised geodesic observer congruence labelled by Sⁱ, proper time T coupled to GR (backreaction)
 comes as close as possible to idealisation of test particles

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

Concrete model: Gaussian dust

$$L_{GD} = - |\det(g)|^{1/2} \left[rac{
ho}{2} \left(g^{\mu
u} \ T_{,\mu} \ T_{,
u} + 1
ight) + g^{\mu
u} \ T_{,\mu} \ (W_j \ S^j_{,
u})
ight]$$

- 2 x (1+D) minimally coupled scalar fields $(T, \rho), (S^{j}, W_{j}), j = 1, .., D$
- perfectly generally covariant
- classical physics (Euler-Lagrange eqns.):
 - $U_{\mu} = \nabla_{\mu} T$: unit timelike geodesic co-tangent \perp to S^{j} =const. lines
 - pressureless $p = D^{-1}[U_{\mu} \ U_{\nu} + g_{\mu\nu}] \ T^{\mu\nu} = 0$
 - interpretation: collision free, synchronised geodesic observer congruence labelled by S^j, proper time T coupled to GR (backreaction)
 - comes as close as possible to idealisation of test particles

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

Concrete model: Gaussian dust

$$L_{GD} = - |\det(g)|^{1/2} \left[rac{
ho}{2} \left(g^{\mu
u} \ T_{,\mu} \ T_{,
u} + 1
ight) + g^{\mu
u} \ T_{,\mu} \ (W_j \ S^j_{,
u})
ight]$$

- 2 x (1+D) minimally coupled scalar fields $(T, \rho), (S^{j}, W_{j}), j = 1, .., D$
- perfectly generally covariant
- classical physics (Euler-Lagrange eqns.):
 - $U_{\mu} = \nabla_{\mu} T$: unit timelike geodesic co-tangent \perp to S^{j} =const. lines
 - pressureless $p = D^{-1}[U_{\mu} \ U_{\nu} + g_{\mu\nu}] \ T^{\mu\nu} = 0$
 - interpretation: collision free, synchronised geodesic observer congruence labelled by Sⁱ, proper time T coupled to GR (backreaction)
 - comes as close as possible to idealisation of test particles

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- classical Hamiltonian formulation $M \cong \mathbb{R} \times \sigma$ [Giesel, TT 10's]
- k = D(D+1)/2 + 3 (D+1) canonical pairs (*a*, *b*, *c*, .. = 1, .., *D*): $(q_{ab}, p^{ab}), (N^{\mu}, \pi_{\mu}), (T, l), (S^{j}, l_{j}), (\rho, Z), (W_{j}, Z^{j})$
- Legendre transf. sing.: 2 x (D+1) + (D-1) velocities u^{μ} , v, v_j , w^A of N^{μ} , ρ , W_j , S^A ; A = 1, ..., D 1 not solvable for
- Dirac's constraint analysis:

 2 x (D+1) + (D-1) primary constraints π_μ = Z = Z^j = ζ_A = W_DI_A - W_AI_D = 0
 primary Hamiltonian

 $h = u^{\mu} \pi_{\mu} + v Z + v_i Z^j + w^A \zeta_A + N^{\mu} c_{\mu}$

- (D+1) + 2 secondary constraints c_μ = ζ = ζ_D = 0; 2 x D velocities v = v^{*}, v_l = v^{*}_i, w^A = w^A_i fixed
- f = 2 x (D+1) first class constr.: π_μ, c_μ,
 s= 2 x (D+1) second class constr. Z, Z_i, ζ, ζ
- o physical canonical pair counting: k-f-s/2=D(D+1)/2
- Dirac bracket: eliminates 2nd class constr. and canonical pairs (ρ, Z), (W_i, Z^j)

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- classical Hamiltonian formulation $M \cong \mathbb{R} \times \sigma$ [Giesel, TT 10's]
- k = D(D+1)/2 + 3 (D+1) canonical pairs (*a*, *b*, *c*, .. = 1, .., *D*): $(q_{ab}, p^{ab}), (N^{\mu}, \pi_{\mu}), (T, I), (S^{j}, I_{j}), (\rho, Z), (W_{j}, Z^{j})$
- Legendre transf. sing.: 2 x (D+1) + (D-1) velocities u^{μ} , v, v_j , w^A of N^{μ} , ρ , W_j , S^A ; A = 1, ..., D 1 not solvable for
- Dirac's constraint analysis:

2 x (D+1) + (D-1) primary constraints
 π_μ = Z = Z^j = ζ_A = W_DI_A - W_AI_D = 0
 primary Hamiltonian

 $h = u^{\mu} \pi_{\mu} + v Z + v_i Z^j + w^A \zeta_A + N^{\mu} c_{\mu}$

- (D+1) + 2 secondary constraints c_μ = ζ = ζ_D = 0; 2 x D velocities v = v^{*}, v_l = v^{*}_i, w^A = w^A_i fixed
- f = 2 x (D+1) first class constr.: π_μ, c_μ,
 s= 2 x (D+1) second class constr. Z, Z_i, ζ, ζ
- o physical canonical pair counting: k-f-s/2=D(D+1)/2
- Dirac bracket: eliminates 2nd class constr. and canonical pairs (ρ, Z), (W_i, Z^j)

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- classical Hamiltonian formulation $M \cong \mathbb{R} \times \sigma$ [Giesel, TT 10's]
- k = D(D+1)/2 + 3 (D+1) canonical pairs (*a*, *b*, *c*, .. = 1, .., *D*): $(q_{ab}, p^{ab}), (N^{\mu}, \pi_{\mu}), (T, I), (S^{j}, I_{j}), (\rho, Z), (W_{j}, Z^{j})$
- Legendre transf. sing.: 2 x (D+1) + (D-1) velocities u^{μ} , v, v_j , w^A of N^{μ} , ρ , W_j , S^A ; A = 1, ..., D 1 not solvable for
- Dirac's constraint analysis:

```
• 2 x (D+1) + (D-1) primary constraints

\pi_{\mu} = Z = Z^{I} = \zeta_{A} = W_{D}I_{A} - W_{A}I_{D} = 0

• primary Hamiltonian
```

 $h = u^{\mu} \pi_{\mu} + v Z + v_{i} Z^{j} + w^{A} \zeta_{A} + N^{\mu} c_{\mu}$

- (D+1) + 2 secondary constraints c_μ = ζ = ζ_D = 0; 2 x D velocities v = v^{*}, v_l = v^{*}, w^A = w^A_{*} fixed
- f = 2 x (D+1) first class constr.: π_μ, c_μ,
 s = 2 x (D+1) second class constr. Z, Z_i, ζ, ζ
- o physical canonical pair counting: k-f-s/2=D(D+1)/2
- Dirac bracket: eliminates 2nd class constr. and canonical pairs (ρ, Z), (W₀, Z^j)

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- classical Hamiltonian formulation $M \cong \mathbb{R} \times \sigma$ [Giesel, TT 10's]
- k = D(D+1)/2 + 3 (D+1) canonical pairs (*a*, *b*, *c*, .. = 1, .., *D*): $(q_{ab}, p^{ab}), (N^{\mu}, \pi_{\mu}), (T, I), (S^{j}, I_{j}), (\rho, Z), (W_{j}, Z^{j})$
- Legendre transf. sing.: 2 x (D+1) + (D-1) velocities u^{μ} , v, v_j , w^A of N^{μ} , ρ , W_j , S^A ; A = 1, ..., D 1 not solvable for
- Dirac's constraint analysis:
 - 2 x (D+1) + (D-1) primary constraints $\pi_{\mu} = Z = Z^{j} = \zeta_{A} = W_{D}I_{A} - W_{A}I_{D} = 0$

primary Hamiltonian

$$h = u^{\mu} \pi_{\mu} + v Z + v_j Z^j + w^A \zeta_A + N^{\mu} c_{\mu}$$

- (D+1) + 2 secondary constraints $c_{\mu} = \zeta = \zeta_D = 0$; 2 x D velocities $v = v^*, v_j = v_i^*, w^A = w_*^A$ fixed
- f = 2 x (D+1) first class constr.: π_{μ} , c_{μ} , s= 2 x (D+1) second class constr. Z, Z_j, ζ, ζ_j
- physical canonical pair counting: k-f-s/2=D(D+1)/2
- Dirac bracket: eliminates 2nd class constr. and canonical pairs $(\rho, Z), (W_i, Z^j)$

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- classical Hamiltonian formulation $M \cong \mathbb{R} \times \sigma$ [Giesel, TT 10's]
- k = D(D+1)/2 + 3 (D+1) canonical pairs (*a*, *b*, *c*, .. = 1, .., *D*): $(q_{ab}, p^{ab}), (N^{\mu}, \pi_{\mu}), (T, I), (S^{j}, I_{j}), (\rho, Z), (W_{j}, Z^{j})$
- Legendre transf. sing.: 2 x (D+1) + (D-1) velocities u^μ, v, v_j, w^A of N^μ, ρ, W_j, S^A; A = 1, .., D 1 not solvable for
- Dirac's constraint analysis:
 - 2 x (D+1) + (D-1) primary constraints $\pi_{\mu} = Z = Z^{j} = \zeta_{A} = W_{D}I_{A} - W_{A}I_{D} = 0$
 - primary Hamiltonian

$$h = u^{\mu} \pi_{\mu} + v Z + v_j Z^j + w^A \zeta_A + N^{\mu} c_{\mu}$$

- (D+1) + 2 secondary constraints c_μ = ζ = ζ_D = 0; 2 x D velocities v = v^{*}, v_j = v^{*}_i, w^A = w^A_{*} fixed
- f = 2 x (D+1) first class constr.: π_μ, c_μ,
 s= 2 x (D+1) second class constr. Z, Z_i, ζ, ζ
- physical canonical pair counting: k-f-s/2=D(D+1)/2
- Dirac bracket: eliminates 2nd class constr. and canonical pairs $(\rho, Z), (W_i, Z^j)$

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- classical Hamiltonian formulation $M \cong \mathbb{R} \times \sigma$ [Giesel, TT 10's]
- k = D(D+1)/2 + 3 (D+1) canonical pairs (*a*, *b*, *c*, .. = 1, .., *D*): $(q_{ab}, p^{ab}), (N^{\mu}, \pi_{\mu}), (T, I), (S^{j}, I_{j}), (\rho, Z), (W_{j}, Z^{j})$
- Legendre transf. sing.: 2 x (D+1) + (D-1) velocities u^μ, v, v_j, w^A of N^μ, ρ, W_j, S^A; A = 1, .., D 1 not solvable for
- Dirac's constraint analysis:
 - 2 x (D+1) + (D-1) primary constraints $\pi_{\mu} = Z = Z^{j} = \zeta_{A} = W_{D}I_{A} - W_{A}I_{D} = 0$
 - primary Hamiltonian

$$h = u^{\mu} \pi_{\mu} + v Z + v_j Z^j + w^A \zeta_A + N^{\mu} c_{\mu}$$

- (D+1) + 2 secondary constraints c_μ = ζ = ζ_D = 0; 2 x D velocities v = v^{*}, v_j = v^{*}_i, w^A = w^A_{*} fixed
- f = 2 x (D+1) first class constr.: π_μ, c_μ, s= 2 x (D+1) second class constr. Z, Z_i, ζ, ζ
- physical canonical pair counting: k-f-s/2=D(D+1)/2
- Dirac bracket: eliminates 2nd class constr. and canonical pairs $(\rho, Z), (W_i, Z^j)$

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- classical Hamiltonian formulation $M \cong \mathbb{R} \times \sigma$ [Giesel, TT 10's]
- k = D(D+1)/2 + 3 (D+1) canonical pairs (*a*, *b*, *c*, .. = 1, .., *D*): $(q_{ab}, p^{ab}), (N^{\mu}, \pi_{\mu}), (T, I), (S^{j}, I_{j}), (\rho, Z), (W_{j}, Z^{j})$
- Legendre transf. sing.: 2 x (D+1) + (D-1) velocities u^μ, v, v_j, w^A of N^μ, ρ, W_j, S^A; A = 1, .., D 1 not solvable for
- Dirac's constraint analysis:
 - 2 x (D+1) + (D-1) primary constraints $\pi_{\mu} = Z = Z^{j} = \zeta_{A} = W_{D}I_{A} - W_{A}I_{D} = 0$
 - primary Hamiltonian

$$h = u^{\mu} \pi_{\mu} + v Z + v_j Z^j + w^A \zeta_A + N^{\mu} c_{\mu}$$

- (D+1) + 2 secondary constraints c_μ = ζ = ζ_D = 0; 2 x D velocities v = v^{*}, v_j = v^{*}_i, w^A = w^A_{*} fixed
- f = 2 x (D+1) first class constr.: π_μ, c_μ,
 s= 2 x (D+1) second class constr. Z, Z_i, ζ, ζ_i
- physical canonical pair counting: k-f-s/2=D(D+1)/2
- Dirac bracket: eliminates 2nd class constr. and canonical pairs (ρ, Z), (W_i, Z^j)
Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- classical Hamiltonian formulation $M \cong \mathbb{R} \times \sigma$ [Giesel, TT 10's]
- k = D(D+1)/2 + 3 (D+1) canonical pairs (*a*, *b*, *c*, .. = 1, .., *D*): $(q_{ab}, p^{ab}), (N^{\mu}, \pi_{\mu}), (T, I), (S^{j}, I_{j}), (\rho, Z), (W_{j}, Z^{j})$
- Legendre transf. sing.: 2 x (D+1) + (D-1) velocities u^μ, v, v_j, w^A of N^μ, ρ, W_j, S^A; A = 1, .., D 1 not solvable for
- Dirac's constraint analysis:
 - 2 x (D+1) + (D-1) primary constraints $\pi_{\mu} = Z = Z^{j} = \zeta_{A} = W_{D}I_{A} - W_{A}I_{D} = 0$
 - primary Hamiltonian

$$h = u^{\mu} \pi_{\mu} + v Z + v_j Z^j + w^A \zeta_A + N^{\mu} c_{\mu}$$

- (D+1) + 2 secondary constraints c_μ = ζ = ζ_D = 0; 2 x D velocities v = v^{*}, v_j = v^{*}_i, w^A = w^A_{*} fixed
- f = 2 x (D+1) first class constr.: π_{μ} , c_{μ} , s= 2 x (D+1) second class constr. Z, Z_j , ζ , ζ_j
- physical canonical pair counting: k-f-s/2=D(D+1)/2
- Dirac bracket: eliminates 2nd class constr. and canonical pairs (ρ, Z), (W_j, Z^j)

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

- classical Hamiltonian formulation $M \cong \mathbb{R} \times \sigma$ [Giesel, TT 10's]
- k = D(D+1)/2 + 3 (D+1) canonical pairs (*a*, *b*, *c*, .. = 1, .., *D*): $(q_{ab}, p^{ab}), (N^{\mu}, \pi_{\mu}), (T, I), (S^{j}, I_{j}), (\rho, Z), (W_{j}, Z^{j})$
- Legendre transf. sing.: 2 x (D+1) + (D-1) velocities u^μ, v, v_j, w^A of N^μ, ρ, W_j, S^A; A = 1, .., D 1 not solvable for
- Dirac's constraint analysis:
 - 2 x (D+1) + (D-1) primary constraints $\pi_{\mu} = Z = Z^{j} = \zeta_{A} = W_{D}I_{A} - W_{A}I_{D} = 0$
 - primary Hamiltonian

$$h = u^{\mu} \pi_{\mu} + v Z + v_j Z^j + w^A \zeta_A + N^{\mu} c_{\mu}$$

- (D+1) + 2 secondary constraints c_μ = ζ = ζ_D = 0; 2 x D velocities v = v^{*}, v_j = v^{*}_i, w^A = w^A_{*} fixed
- f = 2 x (D+1) first class constr.: π_μ, c_μ,
 s= 2 x (D+1) second class constr. Z, Z_j, ζ, ζ_j
- physical canonical pair counting: k-f-s/2=D(D+1)/2
- Dirac bracket: eliminates 2nd class constr. and canonical pairs (ρ, Ζ), (W_j, Z^j)

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

• Synchronous gauge motivated by class. e.o.m. to fix first class. constr. $q^0 = T - T_*, q^j = S^j - S^j_*, T_* = t, S^j_* = \delta^j_a x^a$

• fixes velocities $u^{\mu}=$ 0, lapse/shift $N^{\mu}=N^{\mu}_{*}=\delta^{\mu}_{t}$, solve $c_{\mu}=$ 0 for $I_{\mu}=I^{*}_{\mu}$

- Physical (true, observable, gauge inv., reduced, ..) canonical pair left: (q_{ab}, p^{ab})
- physical Hamiltonian acting on functional F of (q_{ab}, p^{ab})

$$\{H,F\} := \{ \int_{\sigma} d^{D}x \ h(x), \ F\}_{I=I_{*},S=S_{*},Z=Z_{*},W=W^{*},N=N_{*},u=u_{*},v=v^{*},w=w_{*}\}$$

$$H = \kappa^{-1} \int_{\sigma} d^{D}x \left[[\det(q)]^{-1/2} \{ (p_{ab} \ p^{ab})^{2} - \frac{1}{D-1} (p^{a}_{a})^{2} \} - [\det(q)]^{1/2} (R(q) - 2\Lambda) \right]$$

- Properties:
 - Ham. constr. of Lorentzian GR at unit lapse, not constrained to vanish
 - H conservative (no explicit time dependence)
 - D+1 propagating d.o.f. more than in vacuum GR due to dust matter
 - synchronous gauge similar to unitary gauge in Higgs mechanism: eliminate scalars, keep (longitudinal) vector boson modes
 - opposite: GW gauge (eliminate non STT gravity modes, keep scalars) more complicated (PDEs to solve)
 - Looks like highly non-linear σ -model of self-interacting "matrices" q_{ab}
 - Dust as dark matter (only grav. coupling) & natural material ref. syst.

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

• Synchronous gauge motivated by class. e.o.m. to fix first class. constr.

$$g^0 = T - T_*, \ g^j = S^j - S^j_*, \ T_* = t, \ S^j_* = \delta^j_a \ x^a$$

- fixes velocities $u^{\mu} = 0$, lapse/shift $N^{\mu} = N^{\mu}_* = \delta^{\mu}_t$, solve $c_{\mu} = 0$ for $I_{\mu} = I^*_{\mu}$
- Physical (true, observable, gauge inv., reduced, ..) canonical pair left: (q_{ab}, p^{ab})
 physical Hamiltonian acting on functional F of (q_{ab}, p^{ab})

$$\{H,F\} := \{\int_{\sigma} d^{D}x h(x), F\}_{I=I_{*},S=S_{*},Z=Z_{*},W=W^{*},N=N_{*},u=u_{*},v=v^{*},w=w_{*}\}$$

$$H = \kappa^{-1} \int_{\sigma} d^{D}x \left[[\det(q)]^{-1/2} \{ (p_{ab} \ p^{ab})^{2} - \frac{1}{D-1} (p^{a}_{a})^{2} \} - [\det(q)]^{1/2} (R(q) - 2\Lambda) \right]$$

- Properties:
 - Ham. constr. of Lorentzian GR at unit lapse, not constrained to vanish
 - H conservative (no explicit time dependence)
 - D+1 propagating d.o.f. more than in vacuum GR due to dust matter
 - synchronous gauge similar to unitary gauge in Higgs mechanism: eliminate scalars, keep (longitudinal) vector boson modes
 - opposite: GW gauge (eliminate non STT gravity modes, keep scalars) more complicated (PDEs to solve)
 - Looks like highly non-linear σ -model of self-interacting "matrices" q_{ab}
 - Dust as dark matter (only grav. coupling) & natural material ref. syst.

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

• Synchronous gauge motivated by class. e.o.m. to fix first class. constr.

$$g^0 = T - T_*, \; g^j = S^j - S^j_*, \; T_* = t, \; S^j_* = \delta^j_a \; x^a$$

- fixes velocities $u^{\mu} = 0$, lapse/shift $N^{\mu} = N^{\mu}_* = \delta^{\mu}_t$, solve $c_{\mu} = 0$ for $I_{\mu} = I^*_{\mu}$
- Physical (true, observable, gauge inv., reduced, ..) canonical pair left: (q_{ab}, p^{ab})
- physical Hamiltonian acting on functional F of (q_{ab}, p^{ab})

$$\{H,F\} := \{\int_{\sigma} d^{D}x \ h(x), \ F\}_{I=I_{*},S=S_{*},Z=Z_{*},W=W^{*},N=N_{*},u=u_{*},v=v^{*},w=w_{*}\}$$

$$H = \kappa^{-1} \int_{\sigma} d^{D}x \left[[\det(q)]^{-1/2} \{ (p_{ab} \ \rho^{ab})^{2} - \frac{1}{D-1} (\rho^{a} \ _{a})^{2} \} - [\det(q)]^{1/2} \ (R(q) - 2\Lambda) \right]$$

- Properties:
 - Ham. constr. of Lorentzian GR at unit lapse, not constrained to vanish
 - H conservative (no explicit time dependence)
 - D+1 propagating d.o.f. more than in vacuum GR due to dust matter
 - synchronous gauge similar to unitary gauge in Higgs mechanism: eliminate scalars, keep (longitudinal) vector boson modes
 - opposite: GW gauge (eliminate non STT gravity modes, keep scalars) more complicated (PDEs to solve)
 - Looks like highly non-linear σ -model of self-interacting "matrices" q_{ab}
 - Dust as dark matter (only grav. coupling) & natural material ref. syst.

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

• Synchronous gauge motivated by class. e.o.m. to fix first class. constr.

$$g^0 = T - T_*, \; g^j = S^j - S^j_*, \; T_* = t, \; S^j_* = \delta^j_a \; x^a$$

- fixes velocities u^μ = 0, lapse/shift N^μ = N^μ_{*} = δ^μ_t, solve c_μ = 0 for I_μ = I^{*}_μ
- Physical (true, observable, gauge inv., reduced, ..) canonical pair left: (q_{ab}, p^{ab})
- physical Hamiltonian acting on functional F of (q_{ab}, p^{ab})

$$\{H,F\} := \{\int_{\sigma} d^{D}x h(x), F\}_{I=I_{*},S=S_{*},Z=Z_{*},W=W^{*},N=N_{*},u=u_{*},v=v^{*},w=w_{*}\}$$

Result:

$$H = \kappa^{-1} \int_{\sigma} d^{D}x \left[[\det(q)]^{-1/2} \{ (p_{ab} \ p^{ab})^{2} - \frac{1}{D-1} (p^{a} \ _{a})^{2} \} - [\det(q)]^{1/2} (R(q) - 2\Lambda) \right]$$

• Properties:

- Ham. constr. of Lorentzian GR at unit lapse, not constrained to vanish
- H conservative (no explicit time dependence)
- D+1 propagating d.o.f. more than in vacuum GR due to dust matter
- synchronous gauge similar to unitary gauge in Higgs mechanism: eliminate scalars, keep (longitudinal) vector boson modes
- opposite: GW gauge (eliminate non STT gravity modes, keep scalars) more complicated (PDEs to solve)
- Looks like highly non-linear σ -model of self-interacting "matrices" q_{ab}
- Dust as dark matter (only grav. coupling) & natural material ref. syst.

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

• Synchronous gauge motivated by class. e.o.m. to fix first class. constr.

$$g^0 = T - T_*, \; g^j = S^j - S^j_*, \; T_* = t, \; S^j_* = \delta^j_a \; x^a$$

- fixes velocities u^μ = 0, lapse/shift N^μ = N^μ_{*} = δ^μ_t, solve c_μ = 0 for I_μ = I^{*}_μ
- Physical (true, observable, gauge inv., reduced, ...) canonical pair left: (q_{ab}, p^{ab})
- physical Hamiltonian acting on functional F of (q_{ab}, p^{ab})

$$\{H,F\} := \{\int_{\sigma} d^{D}x h(x), F\}_{I=I_{*},S=S_{*},Z=Z_{*},W=W^{*},N=N_{*},u=u_{*},v=v^{*},w=w_{*}\}$$

$$H = \kappa^{-1} \int_{\sigma} d^{D}x \left[[\det(q)]^{-1/2} \{ (p_{ab} \ p^{ab})^{2} - \frac{1}{D-1} (p^{a} \ _{a})^{2} \} - [\det(q)]^{1/2} (R(q) - 2\Lambda) \right]$$

- Properties:
 - Ham. constr. of Lorentzian GR at unit lapse, not constrained to vanish
 - H conservative (no explicit time dependence)
 - D+1 propagating d.o.f. more than in vacuum GR due to dust matter
 - synchronous gauge similar to unitary gauge in Higgs mechanism: eliminate scalars, keep (longitudinal) vector boson modes
 - opposite: GW gauge (eliminate non STT gravity modes, keep scalars) more complicated (PDEs to solve)
 - Looks like highly non-linear σ -model of self-interacting "matrices" q_{ab}
 - Dust as dark matter (only grav. coupling) & natural material ref. syst.

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

• Synchronous gauge motivated by class. e.o.m. to fix first class. constr.

$$g^0 = T - T_*, \; g^j = S^j - S^j_*, \; T_* = t, \; S^j_* = \delta^j_a \; x^a$$

- fixes velocities $u^{\mu} = 0$, lapse/shift $N^{\mu} = N^{\mu}_* = \delta^{\mu}_t$, solve $c_{\mu} = 0$ for $I_{\mu} = I^*_{\mu}$
- Physical (true, observable, gauge inv., reduced, ..) canonical pair left: (q_{ab}, p^{ab})
- physical Hamiltonian acting on functional F of (q_{ab}, p^{ab})

$$\{H,F\} := \{\int_{\sigma} d^{D}x h(x), F\}_{I=I_{*},S=S_{*},Z=Z_{*},W=W^{*},N=N_{*},u=u_{*},v=v^{*},w=w_{*}\}$$

$$H = \kappa^{-1} \int_{\sigma} d^{D}x \left[[\det(q)]^{-1/2} \{ (p_{ab} \ p^{ab})^{2} - \frac{1}{D-1} (p^{a} \ _{a})^{2} \} - [\det(q)]^{1/2} (R(q) - 2\Lambda) \right]$$

- Properties:
 - Ham. constr. of Lorentzian GR at unit lapse, not constrained to vanish
 - H conservative (no explicit time dependence)
 - D+1 propagating d.o.f. more than in vacuum GR due to dust matter
 - synchronous gauge similar to unitary gauge in Higgs mechanism: eliminate scalars, keep (longitudinal) vector boson modes
 - opposite: GW gauge (eliminate non STT gravity modes, keep scalars) more complicated (PDEs to solve)
 - Looks like highly non-linear σ-model of self-interacting "matrices" q_{ab}
 - Dust as dark matter (only grav. coupling) & natural material ref. sys

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

• Synchronous gauge motivated by class. e.o.m. to fix first class. constr.

$$g^0 = T - T_*, \; g^j = S^j - S^j_*, \; T_* = t, \; S^j_* = \delta^j_a \; x^a$$

- fixes velocities $u^{\mu} = 0$, lapse/shift $N^{\mu} = N^{\mu}_* = \delta^{\mu}_t$, solve $c_{\mu} = 0$ for $I_{\mu} = I^*_{\mu}$
- Physical (true, observable, gauge inv., reduced, ..) canonical pair left: (q_{ab}, p^{ab})
- physical Hamiltonian acting on functional F of (q_{ab}, p^{ab})

$$\{H,F\} := \{\int_{\sigma} d^{D}x h(x), F\}_{I=I_{*},S=S_{*},Z=Z_{*},W=W^{*},N=N_{*},u=u_{*},v=v^{*},w=w_{*}\}$$

$$H = \kappa^{-1} \int_{\sigma} d^{D}x \, [[\det(q)]^{-1/2} \{ (p_{ab} \ p^{ab})^{2} - \frac{1}{D-1} (p^{a} \ _{a})^{2} \} - [\det(q)]^{1/2} \, (R(q) - 2\Lambda)]$$

- Properties:
 - Ham. constr. of Lorentzian GR at unit lapse, not constrained to vanish
 - H conservative (no explicit time dependence)
 - D+1 propagating d.o.f. more than in vacuum GR due to dust matter
 - synchronous gauge similar to unitary gauge in Higgs mechanism: eliminate scalars, keep (longitudinal) vector boson modes
 - opposite: GW gauge (eliminate non STT gravity modes, keep scalars) more complicated (PDEs to solve)
 - Looks like highly non-linear σ-model of self-interacting "matrices" q_{ab}
 - Dust as dark matter (only grav. coupling) & natural material ref. sys

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

• Synchronous gauge motivated by class. e.o.m. to fix first class. constr.

$$g^0 = T - T_*, \; g^j = S^j - S^j_*, \; T_* = t, \; S^j_* = \delta^j_a \; x^a$$

- fixes velocities $u^{\mu} = 0$, lapse/shift $N^{\mu} = N^{\mu}_* = \delta^{\mu}_t$, solve $c_{\mu} = 0$ for $I_{\mu} = I^*_{\mu}$
- Physical (true, observable, gauge inv., reduced, ..) canonical pair left: (q_{ab}, p^{ab})
- physical Hamiltonian acting on functional F of (q_{ab}, p^{ab})

$$\{H,F\} := \{\int_{\sigma} d^{D}x h(x), F\}_{I=I_{*},S=S_{*},Z=Z_{*},W=W^{*},N=N_{*},u=u_{*},v=v^{*},w=w_{*}\}$$

$$H = \kappa^{-1} \int_{\sigma} d^{D}x \, [[\det(q)]^{-1/2} \{ (p_{ab} \ p^{ab})^{2} - \frac{1}{D-1} (p^{a} \ _{a})^{2} \} - [\det(q)]^{1/2} \, (R(q) - 2\Lambda)]$$

- Properties:
 - Ham. constr. of Lorentzian GR at unit lapse, not constrained to vanish
 - H conservative (no explicit time dependence)
 - D+1 propagating d.o.f. more than in vacuum GR due to dust matter
 - synchronous gauge similar to unitary gauge in Higgs mechanism: eliminate scalars, keep (longitudinal) vector boson modes
 - opposite: GW gauge (eliminate non STT gravity modes, keep scalars) more complicated (PDEs to solve)
 - Looks like highly non-linear σ-model of self-interacting "matrices" q_{ab}
 - Dust as dark matter (only grav. coupling) & natural material ref. sys

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

• Synchronous gauge motivated by class. e.o.m. to fix first class. constr.

$$g^0 = T - T_*, \; g^j = S^j - S^j_*, \; T_* = t, \; S^j_* = \delta^j_a \; x^a$$

- fixes velocities $u^{\mu} = 0$, lapse/shift $N^{\mu} = N^{\mu}_* = \delta^{\mu}_t$, solve $c_{\mu} = 0$ for $I_{\mu} = I^*_{\mu}$
- Physical (true, observable, gauge inv., reduced, ..) canonical pair left: (q_{ab}, p^{ab})
- physical Hamiltonian acting on functional F of (q_{ab}, p^{ab})

$$\{H,F\} := \{\int_{\sigma} d^{D}x h(x), F\}_{I=I_{*},S=S_{*},Z=Z_{*},W=W^{*},N=N_{*},u=u_{*},v=v^{*},w=w_{*}\}$$

$$H = \kappa^{-1} \int_{\sigma} d^{D}x \, [[\det(q)]^{-1/2} \{ (p_{ab} \ p^{ab})^{2} - \frac{1}{D-1} (p^{a} \ _{a})^{2} \} - [\det(q)]^{1/2} \, (R(q) - 2\Lambda)]$$

- Properties:
 - Ham. constr. of Lorentzian GR at unit lapse, not constrained to vanish
 - H conservative (no explicit time dependence)
 - D+1 propagating d.o.f. more than in vacuum GR due to dust matter
 - synchronous gauge similar to unitary gauge in Higgs mechanism: eliminate scalars, keep (longitudinal) vector boson modes
 - opposite: GW gauge (eliminate non STT gravity modes, keep scalars) more complicated (PDEs to solve)
 - Looks like highly non-linear σ-model of self-interacting "matrices" q_{ab}
 - Dust as dark matter (only grav. coupling) & natural material ref. sys

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

• Synchronous gauge motivated by class. e.o.m. to fix first class. constr.

$$g^0 = T - T_*, \; g^j = S^j - S^j_*, \; T_* = t, \; S^j_* = \delta^j_a \; x^a$$

- fixes velocities $u^{\mu} = 0$, lapse/shift $N^{\mu} = N^{\mu}_* = \delta^{\mu}_t$, solve $c_{\mu} = 0$ for $I_{\mu} = I^*_{\mu}$
- Physical (true, observable, gauge inv., reduced, ..) canonical pair left: (q_{ab}, p^{ab})
- physical Hamiltonian acting on functional F of (q_{ab}, p^{ab})

$$\{H,F\} := \{\int_{\sigma} d^{D}x h(x), F\}_{I=I_{*},S=S_{*},Z=Z_{*},W=W^{*},N=N_{*},u=u_{*},v=v^{*},w=w_{*}\}$$

$$H = \kappa^{-1} \int_{\sigma} d^{D}x \, \left[[\det(q)]^{-1/2} \{ (p_{ab} \ p^{ab})^{2} - \frac{1}{D-1} (p^{a} \ _{a})^{2} \} - \left[\det(q) \right]^{1/2} \, (R(q) - 2\Lambda) \right]$$

- Properties:
 - Ham. constr. of Lorentzian GR at unit lapse, not constrained to vanish
 - H conservative (no explicit time dependence)
 - D+1 propagating d.o.f. more than in vacuum GR due to dust matter
 - synchronous gauge similar to unitary gauge in Higgs mechanism: eliminate scalars, keep (longitudinal) vector boson modes
 - opposite: GW gauge (eliminate non STT gravity modes, keep scalars) more complicated (PDEs to solve)
 - Looks like highly non-linear σ—model of self-interacting "matrices" q_{ab}
 - Dust as dark matter (only grav. coupling) & natural material ref. syst.

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

• Synchronous gauge motivated by class. e.o.m. to fix first class. constr.

$$g^0 = T - T_*, \; g^j = S^j - S^j_*, \; T_* = t, \; S^j_* = \delta^j_a \; x^a$$

- fixes velocities $u^{\mu}=$ 0, lapse/shift $N^{\mu}=N^{\mu}_{*}=\delta^{\mu}_{t}$, solve $c_{\mu}=$ 0 for $I_{\mu}=I^{*}_{\mu}$
- Physical (true, observable, gauge inv., reduced, ..) canonical pair left: (q_{ab}, p^{ab})
- physical Hamiltonian acting on functional F of (q_{ab}, p^{ab})

$$\{H,F\} := \{\int_{\sigma} d^{D}x h(x), F\}_{I=I_{*},S=S_{*},Z=Z_{*},W=W^{*},N=N_{*},u=u_{*},v=v^{*},w=w_{*}\}$$

$$H = \kappa^{-1} \int_{\sigma} d^{D}x \, [[\det(q)]^{-1/2} \{ (p_{ab} \ p^{ab})^{2} - \frac{1}{D-1} (p^{a} \ _{a})^{2} \} - [\det(q)]^{1/2} \, (R(q) - 2\Lambda)]$$

- Properties:
 - Ham. constr. of Lorentzian GR at unit lapse, not constrained to vanish
 - H conservative (no explicit time dependence)
 - D+1 propagating d.o.f. more than in vacuum GR due to dust matter
 - synchronous gauge similar to unitary gauge in Higgs mechanism: eliminate scalars, keep (longitudinal) vector boson modes
 - opposite: GW gauge (eliminate non STT gravity modes, keep scalars) more complicated (PDEs to solve)
 - Looks like highly non-linear σ-model of self-interacting "matrices" q_{ab}
 - Dust as dark matter (only grav. coupling) & natural material ref. syst.

Introduction Sketch: ASQG - CQG junction Concrete model: Gaussian dust

• Synchronous gauge motivated by class. e.o.m. to fix first class. constr.

$$g^0 = T - T_*, \; g^j = S^j - S^j_*, \; T_* = t, \; S^j_* = \delta^j_a \; x^a$$

- fixes velocities u^μ = 0, lapse/shift N^μ = N^μ_{*} = δ^μ_t, solve c_μ = 0 for I_μ = I^{*}_μ
- Physical (true, observable, gauge inv., reduced, ..) canonical pair left: (q_{ab}, p^{ab})
- physical Hamiltonian acting on functional F of (q_{ab}, p^{ab})

$$\{H,F\} := \{\int_{\sigma} d^{D}x h(x), F\}_{I=I_{*},S=S_{*},Z=Z_{*},W=W^{*},N=N_{*},u=u_{*},v=v^{*},w=w_{*}\}$$

$$H = \kappa^{-1} \int_{\sigma} d^{D}x \, [[\det(q)]^{-1/2} \{ (p_{ab} \ p^{ab})^{2} - \frac{1}{D-1} (p^{a} \ _{a})^{2} \} - [\det(q)]^{1/2} \, (R(q) - 2\Lambda)]$$

- Properties:
 - Ham. constr. of Lorentzian GR at unit lapse, not constrained to vanish
 - H conservative (no explicit time dependence)
 - D+1 propagating d.o.f. more than in vacuum GR due to dust matter
 - synchronous gauge similar to unitary gauge in Higgs mechanism: eliminate scalars, keep (longitudinal) vector boson modes
 - opposite: GW gauge (eliminate non STT gravity modes, keep scalars) more complicated (PDEs to solve)
 - Looks like highly non-linear σ-model of self-interacting "matrices" q_{ab}
 - Dust as dark matter (only grav. coupling) & natural material ref. syst.

Canonical qantisation Generating functional of Schwinger functions

Canonical quantisation

$$\begin{aligned} Q_{ab}^{r} &= [\det(q)]^{r} \ q_{ab}, \ P_{r}^{ab} = [\det(q)]^{-r} \ [p^{ab} - \frac{r}{1 + rD} \ q^{ab} \ q_{cd} \ p^{cd}] \\ \{P_{r}^{ab}(x), \ Q_{cd}^{r}(y)\} &= \kappa \ \delta_{(c}^{a} \ \delta_{d)}^{b} \ \delta(x, y) \end{aligned}$$

- New aspect: (Q, P) carry density weights (2r, 1 2r)
- Let \mathfrak{A}_r : time zero Weyl algebra generated by Weyl el. $W_r(f,g) = e^{i \int_{\sigma} d^D x} [t^{ab} Q_{ab}^r + g_{ab} P_{ab}^{ab}]$
- Task 1: Find states (i.e. pos., lin., normalised functionals) $\omega : \mathfrak{A}_r : \to \mathbb{C}$
- Proposition [Gelfland, Naimark, Segal] ω is equivalent to GNS data $(\rho, \mathcal{H}, \Omega)$ via $\omega(\mathfrak{a}) = < \Omega, \ \rho(\mathfrak{a}) \ \Omega >_{\mathcal{H}}$
- Task 2: select ω s.t. H s.a. on \mathcal{H}
- Ω is cyclic (i.e. $\rho(\mathfrak{A}) \Omega$ dense) but not nec. eigenvector of *H*
- Task 3: let $U(t) = e^{-itH}$, $t \in \mathbb{R}$ unitary group. Show that unitary time evolution is mixing, i.e. $\exists \ \Omega_H \in \mathcal{H}$ s.t. $\lim_{T \to \infty} \langle \psi_1, \ U(-T)\psi_2 \rangle = \langle \psi_1, \Omega_H \rangle \langle \Omega_H, \psi_2 \rangle$.

Canonical qantisation Generating functional of Schwinger functions

Canonical quantisation

$$\begin{aligned} Q_{ab}^{r} &= [\det(q)]^{r} \ q_{ab}, \ P_{r}^{ab} = [\det(q)]^{-r} \ [p^{ab} - \frac{r}{1 + rD} \ q^{ab} \ q_{cd} \ p^{cd}] \\ \{P_{r}^{ab}(x), \ Q_{cd}^{r}(y)\} &= \kappa \ \delta_{(c}^{a} \ \delta_{d)}^{b} \ \delta(x, y) \end{aligned}$$

- New aspect: (Q, P) carry density weights (2r, 1 2r)
- Let \mathfrak{A}_{r} : time zero Weyl algebra generated by Weyl el. $W_{r}(f,g) = e^{j \int_{\sigma} d^{D}_{x} [l^{ab} Q_{ab}^{r} + g_{ab} P_{a}^{ab}]}$
- Task 1: Find states (i.e. pos., lin., normalised functionals) $\omega : \mathfrak{A}_r : \to \mathbb{C}$
- Proposition [Gelfland, Naimark, Segal] ω is equivalent to GNS data $(\rho, \mathcal{H}, \Omega)$ via $\omega(\mathfrak{a}) = < \Omega, \ \rho(\mathfrak{a}) \ \Omega >_{\mathcal{H}}$
- Task 2: select ω s.t. H s.a. on \mathcal{H}
- Ω is cyclic (i.e. $\rho(\mathfrak{A}) \Omega$ dense) but not nec. eigenvector of *H*
- Task 3: let $U(t) = e^{-itH}$, $t \in \mathbb{R}$ unitary group. Show that unitary time evolution is mixing, i.e. $\exists \ \Omega_H \in \mathcal{H}$ s.t. $\lim_{T \to \infty} \langle \psi_1, \ U(-T)\psi_2 \rangle = \langle \psi_1, \ \Omega_H \rangle < \Omega_H, \psi_2 \rangle$.

Canonical qantisation Generating functional of Schwinger functions

Canonical quantisation

$$\begin{aligned} Q_{ab}^{r} &= [\det(q)]^{r} \ q_{ab}, \ P_{r}^{ab} = [\det(q)]^{-r} \ [p^{ab} - \frac{r}{1 + rD} \ q^{ab} \ q_{cd} \ p^{cd}] \\ \{P_{r}^{ab}(x), \ Q_{cd}^{r}(y)\} &= \kappa \ \delta_{(c}^{a} \ \delta_{d)}^{b} \ \delta(x, y) \end{aligned}$$

- New aspect: (Q, P) carry density weights (2r, 1 2r)
- Let \mathfrak{A}_r : time zero Weyl algebra generated by Weyl el. $W_r(f,g) = e^{i \int_{\sigma} d^D_x [I^{ab} Q_{ab}^r + g_{ab} P_{ab}^{ab}]}$
- Task 1: Find states (i.e. pos., lin., normalised functionals) $\omega : \mathfrak{A}_r : \to \mathbb{C}$
- Proposition [Gelfland, Naimark, Segal] ω is equivalent to GNS data $(\rho, \mathcal{H}, \Omega)$ via $\omega(\mathfrak{a}) = < \Omega, \ \rho(\mathfrak{a}) \ \Omega >_{\mathcal{H}}$
- Task 2: select ω s.t. H s.a. on \mathcal{H}
- Ω is cyclic (i.e. $\rho(\mathfrak{A}) \Omega$ dense) but not nec. eigenvector of *H*
- Task 3: let $U(t) = e^{-itH}$, $t \in \mathbb{R}$ unitary group. Show that unitary time evolution is mixing, i.e. $\exists \ \Omega_H \in \mathcal{H}$ s.t. $\lim_{T\to\infty} \langle \psi_1, \ U(-T)\psi_2 \rangle = \langle \psi_1, \Omega_H \rangle < \Omega_H, \psi_2 \rangle$.

Canonical qantisation Generating functional of Schwinger functions

Canonical quantisation

$$\begin{aligned} Q_{ab}^{r} &= [\det(q)]^{r} \ q_{ab}, \ P_{r}^{ab} = [\det(q)]^{-r} \ [p^{ab} - \frac{r}{1 + rD} \ q^{ab} \ q_{cd} \ p^{cd}] \\ \{P_{r}^{ab}(x), \ Q_{cd}^{r}(y)\} &= \kappa \ \delta_{(c}^{a} \ \delta_{d)}^{b} \ \delta(x, y) \end{aligned}$$

- New aspect: (Q, P) carry density weights (2r, 1 2r)
- Let \mathfrak{A}_r : time zero Weyl algebra generated by Weyl el. $W_r(f,g) = e^{i \int_{\sigma} d^D_x [I^{ab} Q_{ab}^r + g_{ab} P_{ab}^{ab}]}$
- Task 1: Find states (i.e. pos., lin., normalised functionals) $\omega : \mathfrak{A}_r : \to \mathbb{C}$
- Proposition [Gelfand, Naimark, Segal] ω is equivalent to GNS data $(\rho, \mathcal{H}, \Omega)$ via $\omega(\mathfrak{a}) = < \Omega, \ \rho(\mathfrak{a}) \ \Omega >_{\mathcal{H}}$
- Task 2: select ω s.t. H s.a. on \mathcal{H}
- Ω is cyclic (i.e. $\rho(\mathfrak{A}) \Omega$ dense) but not nec. eigenvector of *H*
- Task 3: let $U(t) = e^{-itH}$, $t \in \mathbb{R}$ unitary group. Show that unitary time evolution is mixing, i.e. $\exists \ \Omega_H \in \mathcal{H}$ s.t. $\lim_{T \to \infty} \langle \psi_1, \ U(-T)\psi_2 \rangle = \langle \psi_1, \ \Omega_H \rangle < \Omega_H, \psi_2 \rangle$.

Canonical qantisation Generating functional of Schwinger functions

Canonical quantisation

$$\begin{aligned} Q_{ab}^{r} &= [\det(q)]^{r} \ q_{ab}, \ P_{r}^{ab} = [\det(q)]^{-r} \ [p^{ab} - \frac{r}{1 + rD} \ q^{ab} \ q_{cd} \ p^{cd}] \\ \{P_{r}^{ab}(x), \ Q_{cd}^{r}(y)\} &= \kappa \ \delta_{(c}^{a} \ \delta_{d)}^{b} \ \delta(x, y) \end{aligned}$$

- New aspect: (Q, P) carry density weights (2r, 1 2r)
- Let \mathfrak{A}_r : time zero Weyl algebra generated by Weyl el. $W_r(f,g) = e^{i \int_{\sigma} d^D x} [t^{ab} Q_{ab}^r + g_{ab} P_r^{ab}]$
- Task 1: Find states (i.e. pos., lin., normalised functionals) $\omega : \mathfrak{A}_r : \to \mathbb{C}$
- Proposition [Gelfand, Naimark, Segal] ω is equivalent to GNS data $(\rho, \mathcal{H}, \Omega)$ via $\omega(\mathfrak{a}) = < \Omega, \ \rho(\mathfrak{a}) \ \Omega >_{\mathcal{H}}$
- Task 2: select ω s.t. H s.a. on \mathcal{H}
- Ω is cyclic (i.e. $\rho(\mathfrak{A}) \Omega$ dense) but not nec. eigenvector of *H*
- Task 3: let $U(t) = e^{-itH}$, $t \in \mathbb{R}$ unitary group. Show that unitary time evolution is mixing, i.e. $\exists \ \Omega_H \in \mathcal{H}$ s.t. $\lim_{T \to \infty} \langle \psi_1, \ U(-T)\psi_2 \rangle = \langle \psi_1, \ \Omega_H \rangle \langle \Omega_H, \psi_2 \rangle$.

Canonical qantisation Generating functional of Schwinger functions

Canonical quantisation

$$\begin{aligned} Q_{ab}^{r} &= [\det(q)]^{r} \ q_{ab}, \ P_{r}^{ab} = [\det(q)]^{-r} \ [p^{ab} - \frac{r}{1 + rD} \ q^{ab} \ q_{cd} \ p^{cd}] \\ \{P_{r}^{ab}(x), \ Q_{cd}^{r}(y)\} &= \kappa \ \delta_{(c}^{a} \ \delta_{d)}^{b} \ \delta(x, y) \end{aligned}$$

- New aspect: (Q, P) carry density weights (2r, 1 2r)
- Let \mathfrak{A}_r : time zero Weyl algebra generated by Weyl el. $W_r(f,g) = e^{i \int_{\sigma} d^D_x [I^{ab} Q_{ab}^r + g_{ab} P_{ab}^{ab}]}$
- Task 1: Find states (i.e. pos., lin., normalised functionals) $\omega : \mathfrak{A}_r : \to \mathbb{C}$
- Proposition [Gelfand, Naimark, Segal] ω is equivalent to GNS data $(\rho, \mathcal{H}, \Omega)$ via $\omega(\mathfrak{a}) = < \Omega, \ \rho(\mathfrak{a}) \ \Omega >_{\mathcal{H}}$
- Task 2: select ω s.t. H s.a. on \mathcal{H}
- Ω is cyclic (i.e. $\rho(\mathfrak{A}) \Omega$ dense) but not nec. eigenvector of *H*
- Task 3: let $U(t) = e^{-itH}$, $t \in \mathbb{R}$ unitary group. Show that unitary time evolution is mixing, i.e. $\exists \ \Omega_H \in \mathcal{H}$ s.t. $\lim_{T\to\infty} \langle \psi_1, \ U(-T)\psi_2 \rangle = \langle \psi_1, \Omega_H \rangle < \Omega_H, \psi_2 \rangle$.

Canonical qantisation Generating functional of Schwinger functions

Canonical quantisation

$$\begin{aligned} Q_{ab}^{r} &= [\det(q)]^{r} \ q_{ab}, \ P_{r}^{ab} = [\det(q)]^{-r} \ [p^{ab} - \frac{r}{1 + rD} \ q^{ab} \ q_{cd} \ p^{cd}] \\ \{P_{r}^{ab}(x), \ Q_{cd}^{r}(y)\} &= \kappa \ \delta_{(c}^{a} \ \delta_{d)}^{b} \ \delta(x, y) \end{aligned}$$

- New aspect: (Q, P) carry density weights (2r, 1 2r)
- Let \mathfrak{A}_r : time zero Weyl algebra generated by Weyl el. $W_r(f,g) = e^{i \int_{\sigma} d^D_x [I^{ab} Q_{ab}^r + g_{ab} P_{ab}^{ab}]}$
- Task 1: Find states (i.e. pos., lin., normalised functionals) $\omega : \mathfrak{A}_r : \to \mathbb{C}$
- Proposition [Gel'fand, Naimark, Segal] ω is equivalent to GNS data $(\rho, \mathcal{H}, \Omega)$ via $\omega(\mathfrak{a}) = < \Omega, \ \rho(\mathfrak{a}) \ \Omega >_{\mathcal{H}}$
- Task 2: select ω s.t. *H* s.a. on *H*
- Ω is cyclic (i.e. ρ(𝔅) Ω dense) but not nec. eigenvector of H
- Task 3: let $U(t) = e^{-itH}$, $t \in \mathbb{R}$ unitary group. Show that unitary time evolution is mixing, i.e. $\exists \ \Omega_H \in \mathcal{H}$ s.t. $\lim_{T \to \infty} \langle \psi_1, \ U(-T)\psi_2 \rangle = \langle \psi_1, \ \Omega_H \rangle \langle \Omega_H, \psi_2 \rangle$.

Canonical qantisation Generating functional of Schwinger functions

Canonical quantisation

$$\begin{aligned} Q_{ab}^{r} &= [\det(q)]^{r} \ q_{ab}, \ P_{r}^{ab} = [\det(q)]^{-r} \ [p^{ab} - \frac{r}{1 + rD} \ q^{ab} \ q_{cd} \ p^{cd}] \\ \{P_{r}^{ab}(x), \ Q_{cd}^{r}(y)\} &= \kappa \ \delta_{(c}^{a} \ \delta_{d)}^{b} \ \delta(x, y) \end{aligned}$$

- New aspect: (Q, P) carry density weights (2r, 1 2r)
- Let \mathfrak{A}_r : time zero Weyl algebra generated by Weyl el. $W_r(f,g) = e^{i \int_{\sigma} d^D_x [I^{ab} Q_{ab}^r + g_{ab} P_{ab}^{ab}]}$
- Task 1: Find states (i.e. pos., lin., normalised functionals) $\omega : \mathfrak{A}_r : \to \mathbb{C}$
- Proposition [Gelfand, Naimark, Segal] ω is equivalent to GNS data $(\rho, \mathcal{H}, \Omega)$ via $\omega(\mathfrak{a}) = < \Omega, \ \rho(\mathfrak{a}) \ \Omega >_{\mathcal{H}}$
- Task 2: select ω s.t. *H* s.a. on *H*
- Ω is cyclic (i.e. ρ(𝔅) Ω dense) but not nec. eigenvector of H
- Task 3: let $U(t) = e^{-itH}$, $t \in \mathbb{R}$ unitary group. Show that unitary time evolution is mixing, i.e. $\exists \ \Omega_H \in \mathcal{H}$ s.t. $\lim_{T\to\infty} \langle \psi_1, \ U(-T)\psi_2 \rangle = \langle \psi_1, \ \Omega_H \rangle < \Omega_H, \psi_2 \rangle$.

• Let $Q_{ab}^{r}(t,x) := U(t) Q_{ab}^{r}(x) U(-t)$ Heisenberg picture time evolution and $Q^{r}[F_{L}] := \int_{\mathbb{R}\times\sigma} dt d^{D}x F_{L}^{ab}(t,x) Q_{ab}^{r}(t,x)$. Then generating functional of time ordered functions

$$<\Omega_H, \ \mathbb{T}_l(e^{j\ Q'[F_L]})\Omega_H>=\lim_{T
ightarrow\infty}rac{<\Omega,\ U(-T)\mathbb{T}_l(e^{j\ Q'[F_L]})U(-T)\Omega>}{<\Omega,U(-2T)\Omega>}$$

• Analytic continuation: $t \to is$, $T \to iS$, $F_E^{ab}(s, x) := -F_L^{ab}(t = is, x)$, $\Delta = S/N$ then with $Q^r[F_{E,k}] = \int_{\sigma} d^D x F_E^{ab}(\frac{k}{N}S, x) Q_{ab}^r(x)$

$$\chi[F_E] := \lim_{S \to \infty} \lim_{N \to \infty} \frac{\langle \Omega, e^{\Delta Q'[F_{E,N-1}]} e^{-\Delta H} ..^{-\Delta H} e^{\Delta Q'[F_{E,-N}]} \Omega \rangle}{\langle \Omega, [e^{-\Delta H}]^{2N} \Omega \rangle}$$

 Use Schrödinger class states, UV & IR cut-offs, take limits: formal phase space PI (Liouville measure)

$$\chi[F] = \frac{Z[F]}{Z[0]}, \quad Z[F] = \int d\mu_L[Q, P] \ e^{-\int_{\mathbb{R}\times\sigma} d^{D+1}X \left[H(X) + iP^{ab}(X)\dot{Q}_{ab}(X)\right]} \times \exp{\langle Q, F \rangle} \Omega[Q(\infty)]^* \Omega[Q(-\infty)]$$

• Let $Q_{ab}^{r}(t,x) := U(t) Q_{ab}^{r}(x) U(-t)$ Heisenberg picture time evolution and $Q^{r}[F_{L}] := \int_{\mathbb{R}\times\sigma} dt d^{D}x F_{L}^{ab}(t,x) Q_{ab}^{r}(t,x)$. Then generating functional of time ordered functions

$$<\Omega_H, \ \mathbb{T}_l(e^{j\ Q'[F_L]})\Omega_H>=\lim_{T
ightarrow\infty}rac{<\Omega,\ U(-T)\mathbb{T}_l(e^{j\ Q'[F_L]})U(-T)\Omega>}{<\Omega,U(-2T)\Omega>}$$

• Analytic continuation: $t \to is$, $T \to iS$, $F_E^{ab}(s, x) := -F_L^{ab}(t = is, x)$, $\Delta = S/N$ then with $Q^r[F_{E,k}] = \int_{\sigma} d^D x F_E^{ab}(\frac{k}{N}S, x) Q_{ab}^r(x)$

$$\chi[F_E] := \lim_{S \to \infty} \lim_{N \to \infty} \frac{\langle \Omega, e^{\Delta Q^r[F_{E,N-1}]} e^{-\Delta H} ..^{-\Delta H} e^{\Delta Q^r[F_{E,-N}]} \Omega \rangle}{\langle \Omega, [e^{-\Delta H}]^{2N} \Omega \rangle}$$

 Use Schrödinger class states, UV & IR cut-offs, take limits: formal phase space PI (Liouville measure)

$$\chi[F] = \frac{Z[F]}{Z[0]}, \quad Z[F] = \int d\mu_L[Q, P] \ e^{-\int_{\mathbb{R}\times\sigma} \ d^{D+1}X \left[H(X) + iP^{ab}(X)\dot{Q}_{ab}(X)\right]} \times \exp\{-Q, F > \Omega[Q(\infty)]^* \Omega[Q(-\infty)]$$

• Let $Q_{ab}^{r}(t,x) := U(t) Q_{ab}^{r}(x) U(-t)$ Heisenberg picture time evolution and $Q^{r}[F_{L}] := \int_{\mathbb{R}\times\sigma} dt d^{D}x F_{L}^{ab}(t,x) Q_{ab}^{r}(t,x)$. Then generating functional of time ordered functions

$$<\Omega_H, \ \mathbb{T}_l(e^{j\ Q'[F_L]})\Omega_H>=\lim_{T
ightarrow\infty}rac{<\Omega,\ U(-T)\mathbb{T}_l(e^{j\ Q'[F_L]})U(-T)\Omega>}{<\Omega,U(-2T)\Omega>}$$

• Analytic continuation: $t \to is$, $T \to iS$, $F_E^{ab}(s, x) := -F_L^{ab}(t = is, x)$, $\Delta = S/N$ then with $Q^r[F_{E,k}] = \int_{\sigma} d^D x F_E^{ab}(\frac{k}{N}S, x) Q_{ab}^r(x)$

$$\chi[F_E] := \lim_{S \to \infty} \lim_{N \to \infty} \frac{\langle \Omega, e^{\Delta Q'[F_{E,N-1}]} e^{-\Delta H} ..^{-\Delta H} e^{\Delta Q'[F_{E,-N}]} \Omega \rangle}{\langle \Omega, [e^{-\Delta H}]^{2N} \Omega \rangle}$$

 Use Schrödinger class states, UV & IR cut-offs, take limits: formal phase space PI (Liouville measure)

$$\begin{split} \chi[F] &= \frac{Z[F]}{Z[0]}, \ Z[F] = \int d\mu_L[Q,P] \ e^{-\int_{\mathbb{R}\times\sigma} \ d^{D+1}X \left[H(X) + iP^{ab}(X)\dot{Q}_{ab}(X)\right]} \times \\ & \exp < Q, F > \Omega[Q(\infty)]^* \ \Omega[Q(-\infty)] \end{split}$$

Canonical qantisation Generating functional of Schwinger functions

Generating functional of Schwinger functions

• Proposition When integrating out the momenta, there is a non-trivial measure Jacobean coming from the DeWitt-metric (r = 0)

$$G_{abcd} = [\det(q)]^{-1/2} [q_{a(c} \; q_{d)b} - rac{1}{D-1} q_{ab} \; q_{cd}]$$

unless

$$r = r_D = \frac{D-4}{4D}$$

• For *r* = *r*_D one finds by regularisation (conformal mode) and contour arguments generating functional of Schwinger functions

$$\begin{split} \chi[F] &= \frac{Z[F]}{Z[0]}, \\ Z[F] &= \int \left[dQ \right] e^{\kappa^{-1} \int_{M} d^{D+1}X \sqrt{\det(g(Q))} \left[R(g(Q)) - 2\Lambda \right]} \exp \langle Q, F \rangle \times \\ \Omega[Q(\infty)]^{*} \Omega[Q(-\infty)] e^{-2[\dot{V}(q(Q(\infty))) - \dot{V}(q(Q(-\infty)))]} \end{split}$$

Canonical qantisation Generating functional of Schwinger functions

Generating functional of Schwinger functions

• Proposition When integrating out the momenta, there is a non-trivial measure Jacobean coming from the DeWitt-metric (r = 0)

$$G_{abcd} = [\det(q)]^{-1/2} [q_{a(c} \; q_{d)b} - rac{1}{D-1} q_{ab} \; q_{cd}]$$

unless

$$r=r_D=\frac{D-4}{4D}$$

• For *r* = *r*_D one finds by regularisation (conformal mode) and contour arguments generating functional of Schwinger functions

$$\begin{split} \chi[F] &= \frac{Z[F]}{Z[0]}, \\ Z[F] &= \int [dQ] \ e^{\kappa^{-1} \int_M \ d^{D+1}X \ \sqrt{\det(g(Q))}[R(g(Q)) - 2\Lambda]} \ \exp \langle Q, F \rangle \times \\ & \Omega[Q(\infty)]^* \ \Omega[Q(-\infty)] \ e^{-2[\dot{V}(q(Q(\infty))) - \dot{V}(q(Q(-\infty)))]]} \end{split}$$

Canonical qantisation Generating functional of Schwinger functions

Generating functional of Schwinger functions

• Proposition When integrating out the momenta, there is a non-trivial measure Jacobean coming from the DeWitt-metric (r = 0)

$$G_{abcd} = [\det(q)]^{-1/2} [q_{a(c} \; q_{d)b} - rac{1}{D-1} q_{ab} \; q_{cd}]$$

unless

$$r=r_D=\frac{D-4}{4D}$$

For r = r_D one finds by regularisation (conformal mode) and contour arguments generating functional of Schwinger functions

$$\begin{split} \chi[F] &= \frac{Z[F]}{Z[0]}, \\ Z[F] &= \int [dQ] \ e^{\kappa^{-1} \int_M \ d^{D+1}X \ \sqrt{\det(g(Q))}[R(g(Q)) - 2\Lambda]} \ \exp \langle Q, F \rangle \times \\ & \Omega[Q(\infty)]^* \ \Omega[Q(-\infty)] \ e^{-2[\dot{V}(q(Q(\infty))) - \dot{V}(q(Q(-\infty)))]} \end{split}$$

Canonical qantisation Generating functional of Schwinger functions

Generating functional of Schwinger functions

- Except for Gibbons-Hawking and state dependent boundary term, integrand equals Euclidian signature metric EH action in synchronous gauge ...
- ... despite the fact that Hamiltonian for Lorentzian signature GR
- No contradiction: just Wick rotat., formally $N_L = 1 \rightarrow N_E = i$ [Niedermaier et al]
- No complex valued metrics arise because *H* not explicitly time dependent.
- For $r = r_D$, formal Lebesgue measure, else measure correction
- Of. ASQG field redefinitions works [Baldazzi, Falls, Ohta, Percacci, Pereira, Zinati]
- Action must be written in terms of Q, including GB term

$$\int d^{D+1}X \left[\det(Q) \right]^{\frac{1}{2(1+rD)}} \left\{ \frac{1}{2} K^{abcd}(r) \dot{Q}_{ab} \dot{Q}_{cd} - \left[R(\left[\det(Q) \right]^{-\frac{r}{1+rD}} Q) - 2\Lambda \right] \right\},$$

$$K^{abcd}(r) = \frac{1}{2} \left[Q^{a(c} Q^{d)b} - u' Q^{ab} Q^{cd} \right], \ u' = \frac{u}{uD-1}, \ u = \frac{1+2r+r^2 D}{D-1}$$

Canonical qantisation Generating functional of Schwinger functions

Generating functional of Schwinger functions

- Except for Gibbons-Hawking and state dependent boundary term, integrand equals Euclidian signature metric EH action in synchronous gauge ...
- ... despite the fact that Hamiltonian for Lorentzian signature GR
- No contradiction: just Wick rotat., formally $N_L = 1 \rightarrow N_E = i$ [Niedermaier et al]
- No complex valued metrics arise because *H* not explicitly time dependent.
- For $r = r_D$, formal Lebesgue measure, else measure correction
- Of. ASQG field redefinitions works [Baldazzi, Falls, Ohta, Percacci, Pereira, Zinati]
- Action must be written in terms of Q, including GB term

$$\int d^{D+1}X \left[\det(Q) \right]^{\frac{1}{2(1+rD)}} \left\{ \frac{1}{2} K^{abcd}(r) \dot{Q}_{ab} \dot{Q}_{cd} - \left[R(\left[\det(Q) \right]^{-\frac{r}{1+rD}} Q) - 2\Lambda \right] \right\},$$

$$K^{abcd}(r) = \frac{1}{2} \left[Q^{a(c} Q^{d)b} - u' Q^{ab} Q^{cd} \right], \ u' = \frac{u}{uD-1}, \ u = \frac{1+2r+r^2 D}{D-1}$$

Canonical qantisation Generating functional of Schwinger functions

Generating functional of Schwinger functions

- Except for Gibbons-Hawking and state dependent boundary term, integrand equals Euclidian signature metric EH action in synchronous gauge ...
- ... despite the fact that Hamiltonian for Lorentzian signature GR
- No contradiction: just Wick rotat., formally $N_L = 1 \rightarrow N_E = i$ [Niedermaier et al]
- No complex valued metrics arise because *H* not explicitly time dependent.
- For $r = r_D$, formal Lebesgue measure, else measure correction
- Of. ASQG field redefinitions works [Baldazzi, Falls, Ohta, Percacci, Pereira, Zinati]
- Action must be written in terms of Q, including GB term

$$\int d^{D+1}X \left[\det(Q) \right]^{\frac{1}{2(1+rD)}} \left\{ \frac{1}{2} K^{abcd}(r) \dot{Q}_{ab} \dot{Q}_{cd} - \left[R(\left[\det(Q) \right]^{-\frac{r}{1+rD}} Q) - 2\Lambda \right] \right\},$$

$$K^{abcd}(r) = \frac{1}{2} \left[Q^{a(c} Q^{d)b} - u' Q^{ab} Q^{cd} \right], \ u' = \frac{u}{uD-1}, \ u = \frac{1+2r+r^2 D}{D-1}$$

Canonical qantisation Generating functional of Schwinger functions

Generating functional of Schwinger functions

- Except for Gibbons-Hawking and state dependent boundary term, integrand equals Euclidian signature metric EH action in synchronous gauge ...
- ... despite the fact that Hamiltonian for Lorentzian signature GR
- No contradiction: just Wick rotat., formally $N_L = 1 \rightarrow N_E = i$ [Niedermaier et al]
- No complex valued metrics arise because *H* not explicitly time dependent.
- For $r = r_D$, formal Lebesgue measure, else measure correction
- Cf. ASQG field redefinitions works [Baldazzi, Falls, Ohta, Percacci, Pereira, Zinati]
- Action must be written in terms of Q, including GB term

$$\int d^{D+1}X \left[\det(Q) \right]^{\frac{1}{2(1+rD)}} \left\{ \frac{1}{2} K^{abcd}(r) \dot{Q}_{ab} \dot{Q}_{cd} - \left[R(\left[\det(Q) \right]^{-\frac{r}{1+rD}}Q) - 2\Lambda \right] \right\},$$

$$K^{abcd}(r) = \frac{1}{2} \left[Q^{a(c} Q^{d)b} - u' Q^{ab} Q^{cd} \right], \ u' = \frac{u}{uD-1}, \ u = \frac{1+2r+r^2 D}{D-1}$$

Canonical qantisation Generating functional of Schwinger functions

Generating functional of Schwinger functions

- Except for Gibbons-Hawking and state dependent boundary term, integrand equals Euclidian signature metric EH action in synchronous gauge ...
- ... despite the fact that Hamiltonian for Lorentzian signature GR
- No contradiction: just Wick rotat., formally $N_L = 1 \rightarrow N_E = i$ [Niedermaier et al]
- No complex valued metrics arise because *H* not explicitly time dependent.
- For $r = r_D$, formal Lebesgue measure, else measure correction
- Cf. ASQG field redefinitions works [Baldazzi, Falls, Ohta, Percacci, Pereira, Zinati]
- Action must be written in terms of Q, including GB term

$$\int d^{D+1}X \left[\det(Q) \right]^{\frac{1}{2(1+rD)}} \left\{ \frac{1}{2} K^{abcd}(r) \dot{Q}_{ab} \dot{Q}_{cd} - \left[R(\left[\det(Q) \right]^{-\frac{r}{1+rD}} Q) - 2\Lambda \right] \right\},$$

$$K^{abcd}(r) = \frac{1}{2} \left[Q^{a(c} Q^{d)b} - u' Q^{ab} Q^{cd} \right], \ u' = \frac{u}{uD-1}, \ u = \frac{1+2r+r^2 D}{D-1}$$

Canonical qantisation Generating functional of Schwinger functions

Generating functional of Schwinger functions

- Except for Gibbons-Hawking and state dependent boundary term, integrand equals Euclidian signature metric EH action in synchronous gauge ...
- ... despite the fact that Hamiltonian for Lorentzian signature GR
- No contradiction: just Wick rotat., formally $N_L = 1 \rightarrow N_E = i$ [Niedermaier et al]
- No complex valued metrics arise because *H* not explicitly time dependent.
- For $r = r_D$, formal Lebesgue measure, else measure correction
- Of. ASQG field redefinitions works [Baldazzi, Falls, Ohta, Percacci, Pereira, Zinati]
- Action must be written in terms of Q, including GB term

$$\int d^{D+1}X \left[\det(Q) \right]^{\frac{1}{2(1+rD)}} \left\{ \frac{1}{2} K^{abcd}(r) \dot{Q}_{ab} \dot{Q}_{cd} - \left[R(\left[\det(Q) \right]^{-\frac{r}{1+rD}} Q) - 2\Lambda \right] \right\},$$

$$K^{abcd}(r) = \frac{1}{2} \left[Q^{a(c} Q^{d)b} - u' Q^{ab} Q^{cd} \right], \ u' = \frac{u}{uD-1}, \ u = \frac{1+2r+r^2 D}{D-1}$$

Canonical qantisation Generating functional of Schwinger functions

Generating functional of Schwinger functions

- Except for Gibbons-Hawking and state dependent boundary term, integrand equals Euclidian signature metric EH action in synchronous gauge ...
- ... despite the fact that Hamiltonian for Lorentzian signature GR
- No contradiction: just Wick rotat., formally $N_L = 1 \rightarrow N_E = i$ [Niedermaier et al]
- No complex valued metrics arise because *H* not explicitly time dependent.
- For $r = r_D$, formal Lebesgue measure, else measure correction
- Of. ASQG field redefinitions works [Baldazzi, Falls, Ohta, Percacci, Pereira, Zinati]
- Action must be written in terms of *Q*, including GB term

$$\int d^{D+1}X \left[\det(Q)\right]^{\frac{1}{2(1+rD)}} \left\{ \frac{1}{2} K^{abcd}(r) \dot{Q}_{ab} \dot{Q}_{cd} - \left[R\left(\left[\det(Q)\right]^{-\frac{r}{1+rD}}Q\right) - 2\Lambda\right] \right\},$$

$$K^{abcd}(r) = \frac{1}{2} \left[Q^{a(c} Q^{d)b} - u' Q^{ab} Q^{cd}\right], \ u' = \frac{u}{uD-1}, \ u = \frac{1+2r+r^2 D}{D-1}$$

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Effective average action - preparation

Standard steps: background field method and cut-off (Ω dep. not displayed)

$$\bar{Z}_k[F;\bar{Q}] = \int [dH] e^{S[\bar{Q}+H]} e^{} e^{-\frac{1}{2}R_k(H;\bar{Q})}$$

Effective average action

$$\bar{\mathsf{F}}_k[\hat{Q},\bar{Q}] = \mathsf{extr}_F \{ \langle F,\hat{Q} \rangle - \mathsf{ln}(\bar{Z}_k[F;\bar{Q}]) \} - \frac{1}{2} R_k(\hat{Q};\bar{Q})$$

Wetterich identity

$$\partial_k \bar{\Gamma}_k(\hat{Q}, \bar{Q}) = \frac{1}{2} \operatorname{Tr}([R_k + \bar{\Gamma}_k^{(2)}(\hat{Q}, \bar{Q})]^{-1} [\partial_k R_k(., \bar{Q})])$$

- No gauge fixing, no ghosts: gauge reduction before q'ion, correlation functions of Â have immediate physical meaning
- Point of view of CQG:

 - Naive Γ[Q] = extr_F {< F, Q > − ln(Z(F))} ill defined, use Wetterich eqn. to find well defined E.A.
 - In particular, want dimensionful couplings finite at k = 0
- Question: How to choose *R_k*?
Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Effective average action - preparation

Standard steps: background field method and cut-off (Ω dep. not displayed)

$$\bar{Z}_{k}[F;\bar{Q}] = \int [dH] e^{S[\bar{Q}+H]} e^{} e^{-\frac{1}{2}R_{k}(H;\bar{Q})}$$

Effective average action

$$\bar{\mathsf{F}}_k[\hat{Q},\bar{Q}] = \mathsf{extr}_{\mathsf{F}} \left\{ < \mathsf{F},\hat{Q} > -\ln(\bar{Z}_k[\mathsf{F};\bar{Q}]) \right\} - \frac{1}{2} R_k(\hat{Q};\bar{Q})$$

$$\partial_k \bar{\Gamma}_k(\hat{Q}, \bar{Q}) = \frac{1}{2} \operatorname{Tr}([R_k + \bar{\Gamma}_k^{(2)}(\hat{Q}, \bar{Q})]^{-1} [\partial_k R_k(., \bar{Q})])$$

- No gauge fixing, no ghosts: gauge reduction before q'ion, correlation functions of Â have immediate physical meaning
- Point of view of CQG:

 - Naive Γ[Q] = extr_F {< F, Q > − ln(Z(F))} ill defined, use Wetterich eqn. to find well defined E.A.
 - In particular, want dimensionful couplings finite at k = 0
- Question: How to choose *R_k*?

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Effective average action - preparation

Standard steps: background field method and cut-off (Ω dep. not displayed)

$$\bar{Z}_{k}[F;\bar{Q}] = \int [dH] e^{S[\bar{Q}+H]} e^{} e^{-\frac{1}{2}R_{k}(H;\bar{Q})}$$

Effective average action

$$\bar{\mathsf{F}}_k[\hat{Q},\bar{Q}] = \mathsf{extr}_{\mathsf{F}} \left\{ < \mathsf{F},\hat{Q} > -\ln(\bar{Z}_k[\mathsf{F};\bar{Q}]) \right\} - \frac{1}{2} R_k(\hat{Q};\bar{Q})$$

$$\partial_k \bar{\Gamma}_k(\hat{Q}, \bar{Q}) = \frac{1}{2} \operatorname{Tr}([R_k + \bar{\Gamma}_k^{(2)}(\hat{Q}, \bar{Q})]^{-1} [\partial_k R_k(., \bar{Q})])$$

- No gauge fixing, no ghosts: gauge reduction before q'ion, correlation functions of Â have immediate physical meaning
- Point of view of CQG:
 - object of physical interest: true effective action (1-PI generating functional)
 Γ[\$\vec{\alpha}\$] := Γ
 _k[\$\vec{\alpha}\$';\$\vec{\alpha}\$]
 _{\alpha} = \$\vec{\alpha}\$, k=0 background independent
 - Naive Γ[Q] = extr_F {< F, Q > − ln(Z(F))} ill defined, use Wetterich eqn. to find well defined E.A.
 - In particular, want dimensionful couplings finite at k = 0
- Question: How to choose *R_k*?

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Effective average action - preparation

Standard steps: background field method and cut-off (Ω dep. not displayed)

$$\bar{Z}_{k}[F;\bar{Q}] = \int [dH] e^{S[\bar{Q}+H]} e^{} e^{-\frac{1}{2} R_{k}(H;\bar{Q})}$$

Effective average action

$$\bar{\mathsf{F}}_k[\hat{Q},\bar{Q}] = \mathsf{extr}_{\mathsf{F}} \left\{ < \mathsf{F},\hat{Q} > -\ln(\bar{Z}_k[\mathsf{F};\bar{Q}]) \right\} - \frac{1}{2} \, \mathsf{R}_k(\hat{Q};\bar{Q})$$

$$\partial_k \bar{\mathsf{F}}_k(\hat{Q}, \bar{Q}) = \frac{1}{2} \operatorname{Tr}([R_k + \bar{\mathsf{F}}_k^{(2)}(\hat{Q}, \bar{Q})]^{-1} [\partial_k R_k(., \bar{Q})])$$

- No gauge fixing, no ghosts: gauge reduction before q'ion, correlation functions of Â have immediate physical meaning
- Point of view of CQG:
 - object of physical interest: true effective action (1-PI generating functional $\Gamma[\hat{\Omega}] := \bar{\Gamma}_k[\hat{\Omega}'; \bar{\Omega}]_{\hat{\Omega} \to 0} = background independent$
 - Naive Γ[Â] = extr_F {< F, Â > − ln(Z(F))} ill defined, use Wetterich eqn. to find well defined E.A.
 - In particular, want dimensionful couplings finite at k = 0
- Question: How to choose R_k?

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Effective average action - preparation

Standard steps: background field method and cut-off (Ω dep. not displayed)

$$\bar{Z}_{k}[F;\bar{Q}] = \int [dH] e^{S[\bar{Q}+H]} e^{} e^{-\frac{1}{2} R_{k}(H;\bar{Q})}$$

Effective average action

$$\bar{\mathsf{F}}_k[\hat{Q},\bar{Q}] = \mathsf{extr}_{\mathsf{F}} \left\{ < \mathsf{F},\hat{Q} > -\ln(\bar{Z}_k[\mathsf{F};\bar{Q}]) \right\} - \frac{1}{2} \, \mathsf{R}_k(\hat{Q};\bar{Q})$$

$$\partial_k \bar{\Gamma}_k(\hat{Q}, \bar{Q}) = \frac{1}{2} \operatorname{Tr}([R_k + \bar{\Gamma}_k^{(2)}(\hat{Q}, \bar{Q})]^{-1} [\partial_k R_k(., \bar{Q})])$$

- No gauge fixing, no ghosts: gauge reduction before q'ion, correlation functions of Â have immediate physical meaning
- Point of view of CQG:
 - object of physical interest: true effective action (1-PI generating functional) $\Gamma[\hat{Q}] := \overline{\Gamma}_k[\hat{Q}'; \overline{Q}]_{\hat{Q}'=0, \overline{Q}=\hat{Q}, k=0} \text{ background independent}$
 - Naive Γ[Â] = extr_F {< F, Â > − ln(Z(F))} ill defined, use Wetterich eqn. to find well defined E.A.
 - In particular, want dimensionful couplings finite at k = 0
- Question: How to choose *R_k*?

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Effective average action - preparation

Standard steps: background field method and cut-off (Ω dep. not displayed)

$$\bar{Z}_{k}[F;\bar{Q}] = \int [dH] e^{S[\bar{Q}+H]} e^{} e^{-\frac{1}{2} R_{k}(H;\bar{Q})}$$

Effective average action

$$\bar{\mathsf{F}}_k[\hat{Q},\bar{Q}] = \mathsf{extr}_{\mathsf{F}} \; \{ < \mathsf{F},\hat{Q} > -\ln(\bar{Z}_k[\mathsf{F};\bar{Q}]) \} - \frac{1}{2} \; \mathsf{R}_k(\hat{Q};\bar{Q})$$

Wetterich identity

$$\partial_k \bar{\Gamma}_k(\hat{Q}, \bar{Q}) = \frac{1}{2} \operatorname{Tr}([R_k + \bar{\Gamma}_k^{(2)}(\hat{Q}, \bar{Q})]^{-1} [\partial_k R_k(., \bar{Q})])$$

- No gauge fixing, no ghosts: gauge reduction before q'ion, correlation functions of Â have immediate physical meaning
- Point of view of CQG:
 - object of physical interest: true effective action (1-PI generating functional) $\Gamma[\hat{Q}] := \bar{\Gamma}_k[\hat{Q}'; \bar{Q}]_{\hat{Q}'=0, \bar{Q}=\hat{Q}, k=0} \text{ background independent}$
 - Naive Γ[Â] = extr_F {< F, Â > − ln(Z(F))} ill defined, use Wetterich eqn. to find well defined E.A.

• In particular, want dimensionful couplings finite at k = 0

• Question: How to choose R_k ?

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Effective average action - preparation

Standard steps: background field method and cut-off (Ω dep. not displayed)

$$\bar{Z}_{k}[F;\bar{Q}] = \int [dH] e^{S[\bar{Q}+H]} e^{} e^{-\frac{1}{2} R_{k}(H;\bar{Q})}$$

Effective average action

$$\bar{\mathsf{F}}_k[\hat{Q},\bar{Q}] = \mathsf{extr}_{\mathsf{F}} \left\{ < \mathsf{F},\hat{Q} > -\ln(\bar{Z}_k[\mathsf{F};\bar{Q}]) \right\} - \frac{1}{2} \, \mathsf{R}_k(\hat{Q};\bar{Q})$$

Wetterich identity

$$\partial_k \bar{\Gamma}_k(\hat{Q}, \bar{Q}) = \frac{1}{2} \operatorname{Tr}([R_k + \bar{\Gamma}_k^{(2)}(\hat{Q}, \bar{Q})]^{-1} [\partial_k R_k(., \bar{Q})])$$

- No gauge fixing, no ghosts: gauge reduction before q'ion, correlation functions of Â have immediate physical meaning
- Point of view of CQG:
 - object of physical interest: true effective action (1-PI generating functional) $\Gamma[\hat{Q}] := \bar{\Gamma}_k[\hat{Q}'; \bar{Q}]_{\hat{Q}'=0, \bar{Q}=\hat{Q}, k=0} \text{ background independent}$
 - Naive Γ[Â] = extr_F {< F, Â > − ln(Z(F))} ill defined, use Wetterich eqn. to find well defined E.A.
 - In particular, want dimensionful couplings finite at k = 0

• Question: How to choose R_k ?

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Effective average action - preparation

Standard steps: background field method and cut-off (Ω dep. not displayed)

$$\bar{Z}_{k}[F;\bar{Q}] = \int [dH] e^{S[\bar{Q}+H]} e^{} e^{-\frac{1}{2} R_{k}(H;\bar{Q})}$$

Effective average action

$$\bar{\mathsf{F}}_k[\hat{Q},\bar{Q}] = \mathsf{extr}_{\mathsf{F}} \left\{ < \mathsf{F},\hat{Q} > -\ln(\bar{Z}_k[\mathsf{F};\bar{Q}]) \right\} - \frac{1}{2} \, \mathsf{R}_k(\hat{Q};\bar{Q})$$

$$\partial_k \bar{\Gamma}_k(\hat{Q}, \bar{Q}) = \frac{1}{2} \operatorname{Tr}([R_k + \bar{\Gamma}_k^{(2)}(\hat{Q}, \bar{Q})]^{-1} [\partial_k R_k(., \bar{Q})])$$

- No gauge fixing, no ghosts: gauge reduction before q'ion, correlation functions of Â have immediate physical meaning
- Point of view of CQG:
 - object of physical interest: true effective action (1-PI generating functional) $\Gamma[\hat{Q}] := \bar{\Gamma}_k[\hat{Q}'; \bar{Q}]_{\hat{Q}'=0, \bar{Q}=\hat{Q}, k=0} \text{ background independent}$
 - Naive Γ[Â] = extr_F {< F, Â> ln(Z(F))} ill defined, use Wetterich eqn. to find well defined E.A.
 - In particular, want dimensionful couplings finite at k = 0
- Question: How to choose R_k?

Conclusion

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

- Action, Hamiltonian no longer inv. wrt full $\text{Diff}_{D+1}(\mathbb{R} \times \sigma)$, only wrt subgroup $\text{Diff}_D(\mathbb{R} \times \sigma)$ of time preserving diffeos $\Phi(s, x) = (s, \varphi(x)), \ \varphi \in \text{Diff}_D(\sigma)$.
- This aspect similar to Horava-Lifshitz gravity (HL-GR)
- Classify irreducible tensor fields wrt $\text{Diff}_D(\mathbb{R} \times \sigma)$ by type $S_D(A, B, w)$
- irreps $T_{D+1}(A, B, w)$ wrt $\text{Diff}_{D+1}(\mathbb{R} \times \sigma)$ decompose into irreps of $\text{Diff}_D(\mathbb{R} \times \sigma)$
- General form of cut-off kernel: $R_k^{abcd}((s, x), (s', x'); \overline{Q}) : S_D(0, 2, w) \rightarrow S_D(2, 0, w), w = 2r$
- Want to import heat kernel techniques developed for T_{D+1} but how?

Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

- Action, Hamiltonian no longer inv. wrt full $\text{Diff}_{D+1}(\mathbb{R} \times \sigma)$, only wrt subgroup $\text{Diff}_D(\mathbb{R} \times \sigma)$ of time preserving diffeos $\Phi(s, x) = (s, \varphi(x)), \ \varphi \in \text{Diff}_D(\sigma)$.
- This aspect similar to Horava-Lifshitz gravity (HL-GR)
- Classify irreducible tensor fields wrt $\text{Diff}_D(\mathbb{R} \times \sigma)$ by type $S_D(A, B, w)$.
- irreps $T_{D+1}(A, B, w)$ wrt $\text{Diff}_{D+1}(\mathbb{R} \times \sigma)$ decompose into irreps of $\text{Diff}_D(\mathbb{R} \times \sigma)$
- General form of cut-off kernel: $R_k^{abcd}((s, x), (s', x'); \overline{Q}) : S_D(0, 2, w) \rightarrow S_D(2, 0, w), w = 2r$
- Want to import heat kernel techniques developed for T_{D+1} but how?

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

- Action, Hamiltonian no longer inv. wrt full $\text{Diff}_{D+1}(\mathbb{R} \times \sigma)$, only wrt subgroup $\text{Diff}_D(\mathbb{R} \times \sigma)$ of time preserving diffeos $\Phi(s, x) = (s, \varphi(x)), \ \varphi \in \text{Diff}_D(\sigma)$.
- This aspect similar to Horava-Lifshitz gravity (HL-GR)
- Classify irreducible tensor fields wrt Diff_D(ℝ × σ) by type S_D(A, B, w).
- irreps $T_{D+1}(A, B, w)$ wrt $\text{Diff}_{D+1}(\mathbb{R} \times \sigma)$ decompose into irreps of $\text{Diff}_D(\mathbb{R} \times \sigma)$
- General form of cut-off kernel: $R_k^{abcd}((s, x), (s', x'); \overline{Q}) : S_D(0, 2, w) \rightarrow S_D(2, 0, w), w = 2r$
- Want to import heat kernel techniques developed for T_{D+1} but how?

Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

- Action, Hamiltonian no longer inv. wrt full Diff_{D+1}(ℝ × σ), only wrt subgroup Diff_D(ℝ × σ) of time preserving diffeos Φ(s, x) = (s, φ(x)), φ ∈ Diff_D(σ).
- This aspect similar to Horava-Lifshitz gravity (HL-GR)
- Classify irreducible tensor fields wrt Diff_D(ℝ × σ) by type S_D(A, B, w).
- irreps $T_{D+1}(A, B, w)$ wrt $\text{Diff}_{D+1}(\mathbb{R} \times \sigma)$ decompose into irreps of $\text{Diff}_D(\mathbb{R} \times \sigma)$
- General form of cut-off kernel: $R_k^{abcd}((s, x), (s', x'); \overline{Q}) : S_D(0, 2, w) \rightarrow S_D(2, 0, w), w = 2r$
- Want to import heat kernel techniques developed for T_{D+1} but how?

Elective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

- Action, Hamiltonian no longer inv. wrt full $\text{Diff}_{D+1}(\mathbb{R} \times \sigma)$, only wrt subgroup $\text{Diff}_D(\mathbb{R} \times \sigma)$ of time preserving diffeos $\Phi(s, x) = (s, \varphi(x)), \ \varphi \in \text{Diff}_D(\sigma)$.
- This aspect similar to Horava-Lifshitz gravity (HL-GR)
- Classify irreducible tensor fields wrt Diff_D(ℝ × σ) by type S_D(A, B, w).
- irreps $T_{D+1}(A, B, w)$ wrt $\text{Diff}_{D+1}(\mathbb{R} \times \sigma)$ decompose into irreps of $\text{Diff}_D(\mathbb{R} \times \sigma)$
- General form of cut-off kernel: $R_k^{abcd}((s, x), (s', x'); \overline{Q}) : S_D(0, 2, w) \rightarrow S_D(2, 0, w), w = 2r$
- Want to import heat kernel techniques developed for T_{D+1} but how?

Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

- Action, Hamiltonian no longer inv. wrt full $\text{Diff}_{D+1}(\mathbb{R} \times \sigma)$, only wrt subgroup $\text{Diff}_D(\mathbb{R} \times \sigma)$ of time preserving diffeos $\Phi(s, x) = (s, \varphi(x)), \ \varphi \in \text{Diff}_D(\sigma)$.
- This aspect similar to Horava-Lifshitz gravity (HL-GR)
- Classify irreducible tensor fields wrt Diff_D(ℝ × σ) by type S_D(A, B, w).
- irreps $T_{D+1}(A, B, w)$ wrt $\text{Diff}_{D+1}(\mathbb{R} \times \sigma)$ decompose into irreps of $\text{Diff}_D(\mathbb{R} \times \sigma)$
- General form of cut-off kernel: $R_k^{abcd}((s, x), (s', x'); \overline{Q}) : S_D(0, 2, w) \rightarrow S_D(2, 0, w), w = 2r$
- Want to import heat kernel techniques developed for T_{D+1} but how?

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

- Define $\bar{g}_{\mu,s} = \delta^s_{\mu}, \ \bar{g}_{ab} = \bar{q}_{ab}, \ \bar{q}_{ab} := \left[\det(\bar{Q})\right]^{-\frac{r}{1+rD}} \bar{Q}_{ab}$
- Embed $E : S_D(A, B, w) \to T_D(A, B, w) \subset T_{D+1}(A, B, w); [E \cdot H]_{\mu\nu} = \delta^a_\mu \delta^b_\nu H_{ab},$ Restrict $R : T_{D+1}(A, B, w) \to S_D(A, B, w); [R \cdot T]_{ab} = \delta^\mu_a \delta^\nu_b T_{\mu\nu}$ and bilinear forms on S_D, T_{D+1} resp. by (M = D + 1)

 $<H, H'>_{D} = \int d^{M}X \left[\det(\bar{q})\right]^{1-2w} \bar{q}^{ac} \bar{q}^{bd} H_{ab} H'_{cd}, \quad <T, T'>_{D+1} = \int d^{M}X \left[\det(\bar{g})\right]^{1-2w} \bar{g}^{\mu\rho} \bar{g}^{\nu\sigma} T_{\mu\nu} T'_{\rho\sigma}$

- Proposition W.r.t. < ., >_D, < ., . >_{D+1} holds:
 i. E is an isometric embedding, ii. R = E*, iii. T_D = E · S_D is Diff_D invariant subspace and R · E = id_{S_D}, E · R = P_{T_D} is an orthogonal projection.
- Let $\overline{\Delta}_{D+1} = \overline{g}^{\mu\nu} \nabla^{\overline{g}}_{\mu} \nabla^{\overline{g}}_{\nu}$ be the standard, positive (hence symm.) op on T_{D+1} , $\overline{\Delta}_{D+1}^{P} = P \cdot \overline{\Delta}_{D+1} \cdot P$ its projection and $\overline{\Delta}_{D} = E^* \cdot \overline{\Delta}_{D+1}^{P} \cdot E$. Then $\overline{\Delta}_{D}$ is a positive (hence symm.) op. on S_D
- There are two natural, symm. heat kernels 1. $e^{t \overline{\Delta}_D} = E^* \cdot e^{t \overline{\Delta}_{D+1}^P} \cdot E$ and 2. $E^* \cdot e^{t \overline{\Delta}_{D+1}} \cdot E$
- Version 1 more complicated, can be perturbatively related to e^{t AD+1} using S-matrix theory and non-minimal ops [Benedetti, Groh, Saueressig et al]
- ASQG technology for HL-GR could help [Contillo, Goossens, Rechenberger, Saueressig ...]
- This work: use simpler vers. 2., i.e neglect $[\overline{\Delta}_{D+1}, P]$ terms

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

• Define
$$ar{g}_{\mu,s} = \delta^s_{\mu}, \ ar{g}_{ab} = ar{q}_{ab}, \ ar{q}_{ab} := [\mathsf{det}(ar{Q})]^{-rac{r}{1+rD}} ar{Q}_{ab}$$

• Embed $E : S_D(A, B, w) \rightarrow T_D(A, B, w) \subset T_{D+1}(A, B, w); [E \cdot H]_{\mu\nu} = \delta^a_{\mu} \delta^b_{\nu} H_{ab},$ Restrict $R : T_{D+1}(A, B, w) \rightarrow S_D(A, B, w); [R \cdot T]_{ab} = \delta^{\mu}_a \delta^{\nu}_b T_{\mu\nu}$ and bilinear forms on S_D, T_{D+1} resp. by (M = D + 1)

 $<{\rm H},{\rm H}'>_{D}=\int~{\rm d}^{M}{\rm X}~[{\rm det}(\bar{q})]^{1-2w}~\bar{q}^{ac}~\bar{q}^{bd}~{\rm H}_{ab}~{\rm H}_{cd}',~~<{\rm T},~{\rm T}'>_{D+1}=\int~{\rm d}^{M}{\rm X}~[{\rm det}(\bar{g})]^{1-2w}~\bar{g}^{\mu\rho}~\bar{g}^{\nu\sigma}~{\rm T}_{\mu\nu}~{\rm T}_{\rho\sigma}'$

- Proposition W.r.t. < ., >_D, < ., .>_{D+1} holds:
 i. E is an isometric embedding, ii. R = E*, iii. T_D = E · S_D is Diff_D invariant subspace and R · E = id_{S_D}, E · R = P_{T_D} is an orthogonal projection.
- Let $\overline{\Delta}_{D+1} = \overline{g}^{\mu\nu} \nabla^{\overline{g}}_{\mu} \nabla^{\overline{g}}_{\nu}$ be the standard, positive (hence symm.) op on T_{D+1} , $\overline{\Delta}_{D+1}^{P} = P \cdot \overline{\Delta}_{D+1} \cdot P$ its projection and $\overline{\Delta}_{D} = E^* \cdot \overline{\Delta}_{D+1}^{P} \cdot E$. Then $\overline{\Delta}_{D}$ is a positive (hence symm.) op. on S_D
- There are two natural, symm. heat kernels
 1. e^{t \overline{D}}_D = E^* \cdot e^t \overline{D}_{D+1}^P \cdot E and 2. E^* \cdot e^t \overline{D}_{D+1} \cdot E
- Version 1 more complicated, can be perturbatively related to e^{t AD+1} using S-matrix theory and non-minimal ops [Benedetti, Groh, Saueressig et al]
- ASQG technology for HL-GR could help [Contillo, Goossens, Rechenberger, Saueressig ...]
- This work: use simpler vers. 2., i.e neglect $[\overline{\Delta}_{D+1}, P]$ terms

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

- Define $\bar{g}_{\mu,s} = \delta^s_{\mu}, \ \bar{g}_{ab} = \bar{q}_{ab}, \ \bar{q}_{ab} := \left[\det(\bar{Q})\right]^{-\frac{r}{1+rD}} \bar{Q}_{ab}$
- Embed $E : S_D(A, B, w) \rightarrow T_D(A, B, w) \subset T_{D+1}(A, B, w); [E \cdot H]_{\mu\nu} = \delta^a_{\mu} \delta^b_{\nu} H_{ab},$ Restrict $R : T_{D+1}(A, B, w) \rightarrow S_D(A, B, w); [R \cdot T]_{ab} = \delta^{\mu}_a \delta^{\nu}_b T_{\mu\nu}$ and bilinear forms on S_D, T_{D+1} resp. by (M = D + 1)

 $<H, H'>_{D} = \int \ d^{M}X \ \left[\det(\bar{q})\right]^{1-2w} \ \bar{q}^{ac} \ \bar{q}^{bd} \ H_{ab} \ H'_{cd}, \ <T, \ T'>_{D+1} = \int \ d^{M}X \ \left[\det(\bar{q})\right]^{1-2w} \ \bar{g}^{\mu\rho} \ \bar{g}^{\nu\sigma} \ T_{\mu\nu} \ T'_{\rho\sigma}$

- Proposition W.r.t. < ., >_D, < ., . >_{D+1} holds:
 i. E is an isometric embedding, ii. R = E*, iii. T_D = E · S_D is Diff_D invariant subspace and R · E = id_{SD}, E · R = P_{TD} is an orthogonal projection.
- Let $\overline{\Delta}_{D+1} = \overline{g}^{\mu\nu} \nabla^{g}_{\mu} \nabla^{g}_{\nu}$ be the standard, positive (hence symm.) op on T_{D+1} , $\overline{\Delta}^{P}_{D+1} = P \cdot \overline{\Delta}_{D+1} \cdot P$ its projection and $\overline{\Delta}_{D} = E^* \cdot \overline{\Delta}^{P}_{D+1} \cdot E$. Then $\overline{\Delta}_{D}$ is a positive (hence symm.) op. on S_D
- There are two natural, symm. heat kernels

 e^{t \(\bar{\Delta}D\)} = E^{*} · e^{t \(\bar{\Delta}D\)} + 1 · E and 2. E^{*} · e^{t \(\bar{\Delta}D\) + 1} · E
- Version 1 more complicated, can be perturbatively related to e^{t AD+1} using S-matrix theory and non-minimal ops [Benedetti, Groh, Saueressig et al]
- ASQG technology for HL-GR could help [Contillo, Goossens, Rechenberger, Saueressig ...]
- This work: use simpler vers. 2., i.e neglect $[\overline{\Delta}_{D+1}, P]$ terms

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

• Define
$$ar{g}_{\mu,s} = \delta^s_{\mu}, \ ar{g}_{ab} = ar{q}_{ab}, \ ar{q}_{ab} := [\mathsf{det}(ar{Q})]^{-rac{r}{1+rD}} ar{Q}_{ab}$$

• Embed $E : S_D(A, B, w) \rightarrow T_D(A, B, w) \subset T_{D+1}(A, B, w); [E \cdot H]_{\mu\nu} = \delta^a_\mu \delta^b_\nu H_{ab},$ Restrict $R : T_{D+1}(A, B, w) \rightarrow S_D(A, B, w); [R \cdot T]_{ab} = \delta^\mu_a \delta^\nu_b T_{\mu\nu}$ and bilinear forms on S_D, T_{D+1} resp. by (M = D + 1)

 $<H, H'>_{D} = \int \ d^{M}X \ \left[\det(\bar{q})\right]^{1-2w} \ \bar{q}^{ac} \ \bar{q}^{bd} \ H_{ab} \ H'_{cd}, \ <T, \ T'>_{D+1} = \int \ d^{M}X \ \left[\det(\bar{q})\right]^{1-2w} \ \bar{g}^{\mu\rho} \ \bar{g}^{\nu\sigma} \ T_{\mu\nu} \ T'_{\rho\sigma}$

Proposition W.r.t. < ., >_D, < ., . >_{D+1} holds:
 i. E is an isometric embedding, ii. R = E*, iii. T_D = E · S_D is Diff_D invariant subspace and R · E = id_{S_D}, E · R = P_{T_D} is an orthogonal projection.

• Let $\overline{\Delta}_{D+1} = \overline{g}^{\mu\nu} \nabla^{\overline{g}}_{\mu} \nabla^{\overline{g}}_{\nu}$ be the standard, positive (hence symm.) op on T_{D+1} , $\overline{\Delta}^{P}_{D+1} = P \cdot \overline{\Delta}_{D+1} \cdot P$ its projection and $\overline{\Delta}_{D} = E^* \cdot \overline{\Delta}^{P}_{D+1} \cdot E$. Then $\overline{\Delta}_{D}$ is a positive (hence symm.) op. on S_D

- There are two natural, symm. heat kernels
 1. e<sup>t \overline{\Delta}_D} = E^* \cdot e^t \overline{\Delta}_{D+1}^P \cdot E and 2. E^* \cdot e^t \overline{\Delta}_{D+1} \cdot E
 </sup>
- Version 1 more complicated, can be perturbatively related to e<sup>t Δ_{D+1} using S-matrix theory and non-minimal ops [Benedetti, Groh, Saueressig et al]
 </sup>
- ASQG technology for HL-GR could help [Contillo, Goossens, Rechenberger, Saueressig ...]
- This work: use simpler vers. 2., i.e neglect $[\overline{\Delta}_{D+1}, P]$ terms

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

- Define $\bar{g}_{\mu,s} = \delta^s_{\mu}, \ \bar{g}_{ab} = \bar{q}_{ab}, \ \bar{q}_{ab} := \left[\det(\bar{Q})\right]^{-\frac{r}{1+rD}} \bar{Q}_{ab}$
- Embed $E : S_D(A, B, w) \rightarrow T_D(A, B, w) \subset T_{D+1}(A, B, w); [E \cdot H]_{\mu\nu} = \delta^a_{\mu} \delta^b_{\nu} H_{ab},$ Restrict $R : T_{D+1}(A, B, w) \rightarrow S_D(A, B, w); [R \cdot T]_{ab} = \delta^{\mu}_a \delta^{\nu}_b T_{\mu\nu}$ and bilinear forms on S_D, T_{D+1} resp. by (M = D + 1)

 $<H, H'>_{D} = \int \ d^{M}X \ \left[\det(\bar{q})\right]^{1-2w} \ \bar{q}^{ac} \ \bar{q}^{bd} \ H_{ab} \ H'_{cd}, \ <T, \ T'>_{D+1} = \int \ d^{M}X \ \left[\det(\bar{q})\right]^{1-2w} \ \bar{g}^{\mu\rho} \ \bar{g}^{\nu\sigma} \ T_{\mu\nu} \ T'_{\rho\sigma}$

- Proposition W.r.t. < ., >_D, < ., . >_{D+1} holds:
 i. E is an isometric embedding, ii. R = E*, iii. T_D = E · S_D is Diff_D invariant subspace and R · E = id_{S_D}, E · R = P_{T_D} is an orthogonal projection.
- Let $\overline{\Delta}_{D+1} = \overline{g}^{\mu\nu} \nabla^{\overline{g}}_{\mu} \nabla^{\overline{g}}_{\nu}$ be the standard, positive (hence symm.) op on T_{D+1} , $\overline{\Delta}^{P}_{D+1} = P \cdot \overline{\Delta}_{D+1} \cdot P$ its projection and $\overline{\Delta}_{D} = E^* \cdot \overline{\Delta}^{P}_{D+1} \cdot E$. Then $\overline{\Delta}_{D}$ is a positive (hence symm.) op. on S_D
- There are two natural, symm. heat kernels 1. $e^{t \overline{\Delta}_D} = E^* \cdot e^{t \overline{\Delta}_{D+1}^P} \cdot E$ and 2. $E^* \cdot e^{t \overline{\Delta}_{D+1}} \cdot E$
- Version 1 more complicated, can be perturbatively related to e^t △_{D+1} using S-matrix theory and non-minimal ops [Benedetti, Groh, Saueressig et al]
- ASQG technology for HL-GR could help [Contillo, Goossens, Rechenberger, Saueressig ...]
- This work: use simpler vers. 2., i.e neglect $[\overline{\Delta}_{D+1}, P]$ terms

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

- Define $\bar{g}_{\mu,s} = \delta^s_{\mu}, \ \bar{g}_{ab} = \bar{q}_{ab}, \ \bar{q}_{ab} := \left[\det(\bar{Q})\right]^{-\frac{r}{1+rD}} \bar{Q}_{ab}$
- Embed $E : S_D(A, B, w) \rightarrow T_D(A, B, w) \subset T_{D+1}(A, B, w); [E \cdot H]_{\mu\nu} = \delta^a_{\mu} \delta^b_{\nu} H_{ab},$ Restrict $R : T_{D+1}(A, B, w) \rightarrow S_D(A, B, w); [R \cdot T]_{ab} = \delta^{\mu}_a \delta^{\nu}_b T_{\mu\nu}$ and bilinear forms on S_D, T_{D+1} resp. by (M = D + 1)

 $<H, H'>_{D} = \int \ d^{M}X \ \left[\det(\bar{q})\right]^{1-2w} \ \bar{q}^{ac} \ \bar{q}^{bd} \ H_{ab} \ H'_{cd}, \ <T, \ T'>_{D+1} = \int \ d^{M}X \ \left[\det(\bar{q})\right]^{1-2w} \ \bar{g}^{\mu\rho} \ \bar{g}^{\nu\sigma} \ T_{\mu\nu} \ T'_{\rho\sigma}$

- Proposition W.r.t. < ., >_D, < ., . >_{D+1} holds:
 i. E is an isometric embedding, ii. R = E*, iii. T_D = E · S_D is Diff_D invariant subspace and R · E = id_{S_D}, E · R = P_{T_D} is an orthogonal projection.
- Let $\overline{\Delta}_{D+1} = \overline{g}^{\mu\nu} \nabla^{\overline{g}}_{\mu} \nabla^{\overline{g}}_{\nu}$ be the standard, positive (hence symm.) op on T_{D+1} , $\overline{\Delta}^{P}_{D+1} = P \cdot \overline{\Delta}_{D+1} \cdot P$ its projection and $\overline{\Delta}_{D} = E^* \cdot \overline{\Delta}^{P}_{D+1} \cdot E$. Then $\overline{\Delta}_{D}$ is a positive (hence symm.) op. on S_D
- There are two natural, symm. heat kernels
 1. e<sup>t \overline{\Delta}_D} = E^* \cdot e^{t \overline{\Delta}_{D+1}} \cdot E and 2. E^* \cdot e^{t \overline{\Delta}_{D+1}} \cdot E
 </sup>
- Version 1 more complicated, can be perturbatively related to $e^{t \overline{\Delta}_{D+1}}$ using S-matrix theory and non-minimal ops [Benedetti, Groh, Saueressig et al]

ASQG technology for HL-GR could help [Contillo, Goossens, Rechenberger, Saueressig ...]

• This work: use simpler vers. 2., i.e neglect $[\overline{\Delta}_{D+1}, P]$ terms

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

- Define $\bar{g}_{\mu,s} = \delta^s_{\mu}, \ \bar{g}_{ab} = \bar{q}_{ab}, \ \bar{q}_{ab} := \left[\det(\bar{Q})\right]^{-\frac{r}{1+rD}} \bar{Q}_{ab}$
- Embed $E : S_D(A, B, w) \rightarrow T_D(A, B, w) \subset T_{D+1}(A, B, w); [E \cdot H]_{\mu\nu} = \delta^a_\mu \delta^b_\nu H_{ab},$ Restrict $R : T_{D+1}(A, B, w) \rightarrow S_D(A, B, w); [R \cdot T]_{ab} = \delta^\mu_a \delta^\nu_b T_{\mu\nu}$ and bilinear forms on S_D, T_{D+1} resp. by (M = D + 1)

 $<H, H'>_{D} = \int \ d^{M}X \ \left[\det(\bar{q})\right]^{1-2w} \ \bar{q}^{ac} \ \bar{q}^{bd} \ H_{ab} \ H'_{cd}, \ <T, \ T'>_{D+1} = \int \ d^{M}X \ \left[\det(\bar{q})\right]^{1-2w} \ \bar{g}^{\mu\rho} \ \bar{g}^{\nu\sigma} \ T_{\mu\nu} \ T'_{\rho\sigma}$

- Proposition W.r.t. < ., >_D, < ., . >_{D+1} holds:
 i. E is an isometric embedding, ii. R = E*, iii. T_D = E · S_D is Diff_D invariant subspace and R · E = id_{S_D}, E · R = P_{T_D} is an orthogonal projection.
- Let $\overline{\Delta}_{D+1} = \overline{g}^{\mu\nu} \nabla^{\overline{g}}_{\mu} \nabla^{\overline{g}}_{\nu}$ be the standard, positive (hence symm.) op on T_{D+1} , $\overline{\Delta}^{P}_{D+1} = P \cdot \overline{\Delta}_{D+1} \cdot P$ its projection and $\overline{\Delta}_{D} = E^* \cdot \overline{\Delta}^{P}_{D+1} \cdot E$. Then $\overline{\Delta}_{D}$ is a positive (hence symm.) op. on S_D
- There are two natural, symm. heat kernels
 1. e<sup>t \overline{\Delta}_D} = E^* \cdot e^{t \overline{\Delta}_{D+1}} \cdot E and 2. E^* \cdot e^{t \overline{\Delta}_{D+1}} \cdot E
 </sup>
- Version 1 more complicated, can be perturbatively related to $e^{t \overline{\Delta}_{D+1}}$ using S-matrix theory and non-minimal ops [Benedetti, Groh, Saueressig et al]
- ASQG technology for HL-GR could help [Contillo, Goossens, Rechenberger, Saueressig ...]
- This work: use simpler vers. 2., i.e neglect $[\overline{\Delta}_{D+1}, P]$ terms

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

- Define $\bar{g}_{\mu,s} = \delta^s_{\mu}$, $\bar{g}_{ab} = \bar{q}_{ab}$, $\bar{q}_{ab} := [\det(\bar{Q})]^{-\frac{r}{1+rD}} \bar{Q}_{ab}$
- Embed $E : S_D(A, B, w) \rightarrow T_D(A, B, w) \subset T_{D+1}(A, B, w); [E \cdot H]_{\mu\nu} = \delta^a_\mu \delta^b_\nu H_{ab},$ Restrict $R : T_{D+1}(A, B, w) \rightarrow S_D(A, B, w); [R \cdot T]_{ab} = \delta^\mu_a \delta^\nu_b T_{\mu\nu}$ and bilinear forms on S_D, T_{D+1} resp. by (M = D + 1)

 $<H, H'>_{D} = \int \ d^{M}X \ \left[\det(\bar{q})\right]^{1-2w} \ \bar{q}^{ac} \ \bar{q}^{bd} \ H_{ab} \ H'_{cd}, \ <T, \ T'>_{D+1} = \int \ d^{M}X \ \left[\det(\bar{q})\right]^{1-2w} \ \bar{g}^{\mu\rho} \ \bar{g}^{\nu\sigma} \ T_{\mu\nu} \ T'_{\rho\sigma}$

- Proposition W.r.t. < ., >_D, < ., . >_{D+1} holds:
 i. E is an isometric embedding, ii. R = E*, iii. T_D = E · S_D is Diff_D invariant subspace and R · E = id_{S_D}, E · R = P_{T_D} is an orthogonal projection.
- Let $\overline{\Delta}_{D+1} = \overline{g}^{\mu\nu} \nabla^{\overline{g}}_{\mu} \nabla^{\overline{g}}_{\nu}$ be the standard, positive (hence symm.) op on T_{D+1} , $\overline{\Delta}^{P}_{D+1} = P \cdot \overline{\Delta}_{D+1} \cdot P$ its projection and $\overline{\Delta}_{D} = E^* \cdot \overline{\Delta}^{P}_{D+1} \cdot E$. Then $\overline{\Delta}_{D}$ is a positive (hence symm.) op. on S_D
- There are two natural, symm. heat kernels
 1. e<sup>t \overline{\Delta}_D} = E^* \cdot e^{t \overline{\Delta}_{D+1}} \cdot E and 2. E^* \cdot e^{t \overline{\Delta}_{D+1}} \cdot E
 </sup>
- Version 1 more complicated, can be perturbatively related to $e^{t \overline{\Delta}_{D+1}}$ using S-matrix theory and non-minimal ops [Benedetti, Groh, Saueressig et al]
- ASQG technology for HL-GR could help [Contillo, Goossens, Rechenberger, Saueressig ...]
- This work: use simpler vers. 2., i.e neglect $[\overline{\Delta}_{D+1}, P]$ terms

Conclusion

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Cut-off kernels 2: cut-off functions

- Assumption[ASQG] ∀ proposed cut-off functions R_k(z) = k² r(z/k²), z ≥ 0 ∃ Laplace pre-image r̂ of r, i.e. r(y) = ∫₀[∞] dt e^{-y t} r̂(t)
- Corollary If r̂ ∃ then

$$I_N := \int_0^\infty dt \, \hat{r}(t) \, t^N = \theta(N) \, (-1)^N \, \left[\left(\frac{d}{dy}\right)^N r \right](0) + \frac{\theta(-\frac{1}{2} - N)}{(|N| - 1)!} \, \int_0^\infty \, dy \, y^{|N| - 1} \, r(y)$$

• Counter-example: $r(y) = \theta(1 - y)$ [TT 24] By corollary: $I_N = \delta_{N,0}, N \ge 0$. Stieltjes moment problem: uniquely $\hat{r}(t) = \delta(t)$. By corollary: $I_N = \infty = \frac{1}{|N|!}$ contradiction (reason: Paley-Wiener)

• To be safe & tame sing. convol. *t* integrals pick \hat{r} smooth, rapid $t = 0, \infty$ decay

- example: $\hat{r}(t) = e^{-[t^2+t^-]}$
- Convol. sing. heat kernel time integrals are of type ($\lambda > 0, \ p > 0 \ n \ge m \ge 1$)

$$J_{p,m,n}(\lambda) := \int_{[0,\infty]^n} d^n t \prod_{k=1}^m \hat{r}(t_k) e^{-\lambda \sum_{l=m+1}^n t_l} (\sum_{k=1}^n t_k)^{-\mu}$$

$$(s_1 + s_2)^{-p} = \int_{-\frac{1}{4} - i\infty}^{-\frac{1}{4} + i\infty} \frac{dz}{2\pi i} s_1^z s_2^{-[p+z]} \frac{\Gamma(z+p)\Gamma(-z)}{z_1 + z_2} + z_2 +$$

Cut-off kernels 2: cut-off fu Cut-off kernels 3: tensor st EH truncation flow

Cut-off kernels 2: cut-off functions

- Assumption[ASQG] ∀ proposed cut-off functions R_k(z) = k² r(z/k²), z ≥ 0 ∃ Laplace pre-image r̂ of r, i.e. r(y) = ∫₀[∞] dt e^{-y t} r̂(t)
- Corollary If $\hat{r} \exists$ then

$$I_N := \int_0^\infty dt \, \hat{r}(t) \, t^N = \theta(N) \, (-1)^N \, \left[\left(\frac{d}{dy}\right)^N r \right](0) + \frac{\theta(-\frac{1}{2} - N)}{(|N| - 1)!} \, \int_0^\infty dy \, y^{|N| - 1} \, r(y)$$

• Counter-example: $r(y) = \theta(1 - y)$ [TT 24] By corollary: $I_N = \delta_{N,0}, N \ge 0$. Stieltjes moment problem: uniquely $\hat{r}(t) = \delta(t)$. By corollary: $I_N = \infty = \frac{1}{|N|!}$ contradiction (reason: Paley-Wiener)

• To be safe & tame sing. convol. t integrals pick \hat{r} smooth, rapid $t = 0, \infty$ decay

• example:
$$\hat{r}(t) = e^{-[t^2+t^-]}$$

• Convol. sing. heat kernel time integrals are of type ($\lambda > 0, \ p > 0 \ n \ge m \ge 1$)

$$J_{p,m,n}(\lambda) := \int_{[0,\infty]^n} d^n t \prod_{k=1}^m \hat{r}(t_k) e^{-\lambda \sum_{l=m+1}^n t_l} (\sum_{k=1}^n t_k)^{-\mu}$$

$$(s_1 + s_2)^{-p} = \int_{-\frac{1}{4} - i\infty}^{-\frac{1}{4} + i\infty} \frac{dz}{2\pi i} s_1^z s_2^{-[p+z]} \frac{\Gamma(z+p)\Gamma(-z)}{z_1 + z_2} + z_2 +$$

Conclusion

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Cut-off kernels 2: cut-off functions

- Assumption[ASQG] ∀ proposed cut-off functions R_k(z) = k² r(z/k²), z ≥ 0 ∃ Laplace pre-image r̂ of r, i.e. r(y) = ∫₀[∞] dt e^{-y t} r̂(t)
- Corollary If $\hat{r} \exists$ then

$$I_N := \int_0^\infty dt \, \hat{r}(t) \, t^N = \theta(N) \, (-1)^N \, \left[\left(\frac{d}{dy}\right)^N r \right](0) + \frac{\theta(-\frac{1}{2} - N)}{(|N| - 1)!} \, \int_0^\infty dy \, y^{|N| - 1} \, r(y)$$

- Counter-example: $r(y) = \theta(1 y)$ [TT 24] By corollary: $I_N = \delta_{N,0}, N \ge 0$. Stieltjes moment problem: uniquely $\hat{r}(t) = \delta(t)$. By corollary: $I_N = \infty = \frac{1}{|N|!}$ contradiction (reason: Paley-Wiener)
- To be safe & tame sing. convol. *t* integrals pick *r* smooth, rapid *t* = 0, ∞ decay
 example: *t*(*t*) = e^{-[t²+t⁻²]}
- Convol. sing. heat kernel time integrals are of type ($\lambda > 0, \ p > 0 \ n \ge m \ge 1$)

$$J_{\rho,m,n}(\lambda) := \int_{[0,\infty]^n} d^n t \prod_{k=1}^m \hat{r}(t_k) e^{-\lambda \sum_{l=m+1}^n t_l} (\sum_{k=1}^n t_k)^{-\rho}$$

$$(s_1 + s_2)^{-p} = \int_{-\frac{1}{4} - i\infty}^{-\frac{1}{4} + i\infty} \frac{dz}{2\pi i} s_1^z s_2^{-[p+z]} \frac{\Gamma(z+p)\Gamma(-z)}{z_1 + z_2} + z_2 +$$

Conclusion

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Cut-off kernels 2: cut-off functions

- Assumption[ASQG] ∀ proposed cut-off functions R_k(z) = k² r(z/k²), z ≥ 0 ∃ Laplace pre-image r̂ of r, i.e. r(y) = ∫₀[∞] dt e^{-y t} r̂(t)
- Corollary If $\hat{r} \exists$ then

$$I_N := \int_0^\infty dt \, \hat{r}(t) \, t^N = \theta(N) \, (-1)^N \, \left[\left(\frac{d}{dy}\right)^N r \right](0) + \frac{\theta(-\frac{1}{2} - N)}{(|N| - 1)!} \, \int_0^\infty dy \, y^{|N| - 1} \, r(y)$$

- Counter-example: $r(y) = \theta(1 y)$ [TT 24] By corollary: $I_N = \delta_{N,0}, N \ge 0$. Stieltjes moment problem: uniquely $\hat{r}(t) = \delta(t)$. By corollary: $I_N = \infty = \frac{1}{|N|!}$ contradiction (reason: Paley-Wiener)
- To be safe & tame sing. convol. *t* integrals pick *r* smooth, rapid *t* = 0, ∞ decay
 example: *t*(*t*) = e^{-[t²+t⁻²]}
- Convol. sing. heat kernel time integrals are of type ($\lambda > 0, \ p > 0 \ n \ge m \ge 1$)

$$J_{\rho,m,n}(\lambda) := \int_{[0,\infty]^n} d^n t \prod_{k=1}^m \hat{r}(t_k) e^{-\lambda \sum_{l=m+1}^n t_l} (\sum_{k=1}^n t_k)^{-\rho}$$

$$(s_1 + s_2)^{-p} = \int_{-\frac{1}{4} - i\infty}^{-\frac{1}{4} + i\infty} \frac{dz}{2\pi i} s_1^z s_2^{-[p+z]} \frac{\Gamma(z+p)\Gamma(-z)}{z_1 + z_2} + z_2 +$$

Conclusion

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Cut-off kernels 2: cut-off functions

- Assumption[ASQG] ∀ proposed cut-off functions R_k(z) = k² r(z/k²), z ≥ 0 ∃ Laplace pre-image r̂ of r, i.e. r(y) = ∫₀[∞] dt e^{-y t} r̂(t)
- Corollary If $\hat{r} \exists$ then

$$I_N := \int_0^\infty dt \, \hat{r}(t) \, t^N = \theta(N) \, (-1)^N \, [(\frac{d}{dy})^N r](0) + \frac{\theta(-\frac{1}{2} - N)}{(|N| - 1)!} \, \int_0^\infty dy \, y^{|N| - 1} \, r(y)$$

• Counter-example: $r(y) = \theta(1 - y)$ [TT 24] By corollary: $I_N = \delta_{N,0}, N \ge 0$. Stieltjes moment problem: uniquely $\hat{r}(t) = \delta(t)$. By corollary: $I_N = \infty = \frac{1}{|N|!}$ contradiction (reason: Paley-Wiener)

• To be safe & tame sing. convol. *t* integrals pick \hat{r} smooth, rapid $t = 0, \infty$ decay

- example: $\hat{r}(t) = e^{-[t^2]}$
- Convol. sing. heat kernel time integrals are of type ($\lambda > 0, \ p > 0 \ n \ge m \ge 1$)

$$J_{p,m,n}(\lambda) := \int_{[0,\infty]^n} d^n t \prod_{k=1}^m \hat{r}(t_k) e^{-\lambda \sum_{l=m+1}^n t_l} (\sum_{k=1}^n t_k)^{-p}$$

$$(s_1 + s_2)^{-p} = \int_{-\frac{1}{4} - i\infty}^{-\frac{1}{4} + i\infty} \frac{dz}{2\pi i} s_1^z s_2^{-[p+z]} \frac{\Gamma(z+p)\Gamma(-z)}{z_1 + z_2} + \frac{\Gamma(z+p)\Gamma(-z)}{z_1 + z_2} + \frac{\Gamma(z+p)\Gamma(z_2)}{z_2 + z_2} + \frac{\Gamma(z+p)\Gamma(z_2)}{z_2} + \frac$$

Conclusion

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Cut-off kernels 2: cut-off functions

- Assumption[ASQG] ∀ proposed cut-off functions R_k(z) = k² r(z/k²), z ≥ 0 ∃ Laplace pre-image r̂ of r, i.e. r(y) = ∫₀[∞] dt e^{-y t} r̂(t)
- Corollary If $\hat{r} \exists$ then

$$I_N := \int_0^\infty dt \, \hat{r}(t) \, t^N = \theta(N) \, (-1)^N \, \left[\left(\frac{d}{dy}\right)^N r \right](0) + \frac{\theta(-\frac{1}{2} - N)}{(|N| - 1)!} \, \int_0^\infty dy \, y^{|N| - 1} \, r(y)$$

- Counter-example: $r(y) = \theta(1 y)$ [TT 24] By corollary: $I_N = \delta_{N,0}, N \ge 0$. Stieltjes moment problem: uniquely $\hat{r}(t) = \delta(t)$. By corollary: $I_N = \infty = \frac{1}{|N|!}$ contradiction (reason: Paley-Wiener)
- To be safe & tame sing. convol. *t* integrals pick \hat{r} smooth, rapid $t = 0, \infty$ decay

• example:
$$\hat{r}(t) = e^{-[t^2 + t^{-2}]}$$

• Convol. sing. heat kernel time integrals are of type ($\lambda > 0, p > 0 n \ge m \ge 1$)

$$J_{\rho,m,n}(\lambda) := \int_{[0,\infty]^n} d^n t \prod_{k=1}^m \hat{r}(t_k) e^{-\lambda \sum_{l=m+1}^n t_l} (\sum_{k=1}^n t_k)^{-\rho}$$

$$(s_1 + s_2)^{-p} = \int_{-\frac{1}{4} - i\infty}^{-\frac{1}{4} + i\infty} \frac{dz}{2\pi i} s_1^z s_2^{-[p+z]} \frac{\Gamma(z+p)\Gamma(-z)}{z_1 + z_2} + z_2 +$$

Conclusion

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Cut-off kernels 2: cut-off functions

- Assumption[ASQG] ∀ proposed cut-off functions R_k(z) = k² r(z/k²), z ≥ 0 ∃ Laplace pre-image r̂ of r, i.e. r(y) = ∫₀[∞] dt e^{-y t} r̂(t)
- Corollary If $\hat{r} \exists$ then

$$I_N := \int_0^\infty dt \, \hat{r}(t) \, t^N = \theta(N) \, (-1)^N \, \left[\left(\frac{d}{dy}\right)^N r \right](0) + \frac{\theta(-\frac{1}{2} - N)}{(|N| - 1)!} \, \int_0^\infty dy \, y^{|N| - 1} \, r(y)$$

• Counter-example: $r(y) = \theta(1 - y)$ [TT 24] By corollary: $I_N = \delta_{N,0}, N \ge 0$. Stieltjes moment problem: uniquely $\hat{r}(t) = \delta(t)$. By corollary: $I_N = \infty = \frac{1}{|N|!}$ contradiction (reason: Paley-Wiener)

• To be safe & tame sing. convol. *t* integrals pick \hat{r} smooth, rapid $t = 0, \infty$ decay

• example:
$$\hat{r}(t) = e^{-[t^2 + t^{-2}]}$$

• Convol. sing. heat kernel time integrals are of type ($\lambda > 0, p > 0 n \ge m \ge 1$)

$$J_{p,m,n}(\lambda) := \int_{[0,\infty]^n} d^n t \prod_{k=1}^m \hat{r}(t_k) e^{-\lambda \sum_{l=m+1}^n t_l} (\sum_{k=1}^n t_k)^{-p}$$

$$(s_1 + s_2)^{-p} = \int_{-\frac{1}{4} - i\infty}^{-\frac{1}{4} + i\infty} \frac{dz}{2\pi i} s_1^z s_2^{-[p+z]} \frac{\Gamma(z+p)\Gamma(-z)}{z_1 + z_2} + \frac{\Gamma(z+p)\Gamma(-z)}{z_1 + z_2} + \frac{\Gamma(z+p)\Gamma(-z)}{z_1 + z_2} + \frac{\Gamma(z+p)\Gamma(-z)}{z_2 + z_2} + \frac{\Gamma(z+p)\Gamma(-z)}{z_1 + z_2} +$$

Conclusion

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Cut-off kernels 2: cut-off functions

- Assumption[ASQG] ∀ proposed cut-off functions R_k(z) = k² r(z/k²), z ≥ 0 ∃ Laplace pre-image r̂ of r, i.e. r(y) = ∫₀[∞] dt e^{-y t} r̂(t)
- Corollary If $\hat{r} \exists$ then

$$I_N := \int_0^\infty dt \, \hat{r}(t) \, t^N = \theta(N) \, (-1)^N \, \left[\left(\frac{d}{dy}\right)^N r \right](0) + \frac{\theta(-\frac{1}{2} - N)}{(|N| - 1)!} \, \int_0^\infty dy \, y^{|N| - 1} \, r(y)$$

• Counter-example: $r(y) = \theta(1 - y)$ [TT 24] By corollary: $I_N = \delta_{N,0}, N \ge 0$. Stieltjes moment problem: uniquely $\hat{r}(t) = \delta(t)$. By corollary: $I_N = \infty = \frac{1}{|N|!}$ contradiction (reason: Paley-Wiener)

• To be safe & tame sing. convol. *t* integrals pick \hat{r} smooth, rapid $t = 0, \infty$ decay

- example: $\hat{r}(t) = e^{-[t^2 + t^{-2}]}$
- Convol. sing. heat kernel time integrals are of type ($\lambda > 0, p > 0 n \ge m \ge 1$)

$$J_{p,m,n}(\lambda) := \int_{[0,\infty]^n} d^n t \prod_{k=1}^m \hat{r}(t_k) e^{-\lambda \sum_{l=m+1}^n t_l} (\sum_{k=1}^n t_k)^{-p}$$

$$(s_1 + s_2)^{-\rho} = \int_{-\frac{1}{4} - i\infty}^{-\frac{1}{4} + i\infty} \frac{dz}{2\pi i} s_1^z s_2^{-[\rho+z]} \frac{\Gamma(z+\rho)\Gamma(-z)}{\Gamma(\rho)}$$

Conclusion

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Cut-off kernels 3: tensor structure

• When computing $\bar{\Gamma}_k^{(2)}(\hat{Q}, \bar{Q})$ for the Wetterich eqn. a new effect arises when $r \neq 0$, structurally

 $< H, \ [\bar{\Gamma}_{k}^{(2)}(\hat{Q}, \bar{Q})]_{\hat{Q}=0} \cdot H >_{D} = < H, \ \{K_{1}(r) \cdot [-\partial_{s}^{2}] + K_{2}(r) \cdot [\overline{\Delta}_{D} + \partial_{s}^{2} + 2\Lambda_{k}] + U_{k}\} \cdot H >_{D}$

- U_k: non-minimal terms
- Time and space der. have different coeff.: $K_1(r) K_2(r) \propto r \neq 0$ unless D = 4
- Physically correct effect of taking the De-Witt metric Jacobean into account
- Honest treatment requires to go beyond EH-truncation theory space
- Ad hoc treatment: Define $K_{\pm}(r) = \frac{1}{2}[K_1(r) \pm K_2(r)]$, replace K_1, K_2 by K_+
- Could be interpreted as "integral part of EH truncation procedure"
- Final cut-off kernel

$$\begin{aligned} R_k^{abcd}(\bar{Q}) &= \kappa_k^{-1} \left(\left[\det(\bar{Q}) \right]^{\frac{1}{2(1+D)}} K_+ E^* \cdot R_k(\overline{\Delta}_{D+1}) \cdot E \right)^{abcd} \\ 2 K_+^{abcd} &= \bar{Q}^{a(c} \bar{Q}^{d)b} - u_+(r) \ \bar{Q}^{ab} \bar{Q}^{cd} \end{aligned}$$

Conclusion

Effective average action - preparatior Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Cut-off kernels 3: tensor structure

• When computing $\bar{\Gamma}_k^{(2)}(\hat{Q}, \bar{Q})$ for the Wetterich eqn. a new effect arises when $r \neq 0$, structurally

 $< H, \ [\bar{\Gamma}_{k}^{(2)}(\hat{Q}, \bar{Q})]_{\hat{Q}=0} \cdot H >_{D} = < H, \ \{K_{1}(r) \cdot [-\partial_{s}^{2}] + K_{2}(r) \cdot [\overline{\Delta}_{D} + \partial_{s}^{2} + 2\Lambda_{k}] + U_{k}\} \cdot H >_{D}$

U_k: non-minimal terms

- Time and space der. have different coeff.: $K_1(r) K_2(r) \propto r \neq 0$ unless D = 4
- Physically correct effect of taking the De-Witt metric Jacobean into account
- Honest treatment requires to go beyond EH-truncation theory space
- Ad hoc treatment: Define $K_{\pm}(r) = \frac{1}{2}[K_1(r) \pm K_2(r)]$, replace K_1, K_2 by K_+
- Could be interpreted as "integral part of EH truncation procedure"
- Final cut-off kernel

 $\begin{aligned} R_k^{abcd}(\bar{Q}) &= \kappa_k^{-1} \left(\left[\det(\bar{Q}) \right]^{\frac{1}{2(1+D)}} K_+ E^* \cdot R_k(\overline{\Delta}_{D+1}) \cdot E \right)^{abcd}, \\ 2 K_+^{abcd} &= \bar{Q}^{a(c} \bar{Q}^{d)b} - u_+(r) \ \bar{Q}^{ab} \bar{Q}^{cd} \end{aligned}$

Conclusion

Effective average action - preparation Out-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Out-off kernels 3: tensor structure EH truncation flow

Cut-off kernels 3: tensor structure

• When computing $\bar{\Gamma}_k^{(2)}(\hat{Q}, \bar{Q})$ for the Wetterich eqn. a new effect arises when $r \neq 0$, structurally

 $< H, \ [\bar{\Gamma}_{k}^{(2)}(\hat{Q}, \bar{Q})]_{\hat{Q}=0} \cdot H >_{D} = < H, \ \{K_{1}(r) \cdot [-\partial_{s}^{2}] + K_{2}(r) \cdot [\overline{\Delta}_{D} + \partial_{s}^{2} + 2\Lambda_{k}] + U_{k}\} \cdot H >_{D}$

- U_k: non-minimal terms
- Time and space der. have different coeff.: $K_1(r) K_2(r) \propto r \neq 0$ unless D = 4
- Physically correct effect of taking the De-Witt metric Jacobean into account
- Honest treatment requires to go beyond EH-truncation theory space
- Ad hoc treatment: Define $K_{\pm}(r) = \frac{1}{2}[K_1(r) \pm K_2(r)]$, replace K_1, K_2 by K_+
- Could be interpreted as "integral part of EH truncation procedure"
- Final cut-off kernel

 $\begin{aligned} R_k^{abcd}(\bar{Q}) &= \kappa_k^{-1} \left(\left[\det(\bar{Q}) \right]^{\frac{1}{2(1+D)}} K_+ E^* \cdot R_k(\overline{\Delta}_{D+1}) \cdot E \right)^{abcd}, \\ 2 K_+^{abcd} &= \bar{Q}^{a(c} \bar{Q}^{d)b} - u_+(r) \ \bar{Q}^{ab} \bar{Q}^{cd} \end{aligned}$

Conclusion

Effective average action - preparation Out-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Out-off kernels 3: tensor structure EH truncation flow

Cut-off kernels 3: tensor structure

• When computing $\bar{\Gamma}_k^{(2)}(\hat{Q}, \bar{Q})$ for the Wetterich eqn. a new effect arises when $r \neq 0$, structurally

 $< H, \ [\bar{\Gamma}_{k}^{(2)}(\hat{Q}, \bar{Q})]_{\hat{Q}=0} \cdot H >_{D} = < H, \ \{K_{1}(r) \cdot [-\partial_{s}^{2}] + K_{2}(r) \cdot [\overline{\Delta}_{D} + \partial_{s}^{2} + 2\Lambda_{k}] + U_{k}\} \cdot H >_{D}$

- U_k: non-minimal terms
- Time and space der. have different coeff.: $K_1(r) K_2(r) \propto r \neq 0$ unless D = 4
- Physically correct effect of taking the De-Witt metric Jacobean into account
- Honest treatment requires to go beyond EH-truncation theory space
- Ad hoc treatment: Define $K_{\pm}(r) = \frac{1}{2}[K_1(r) \pm K_2(r)]$, replace K_1, K_2 by K_+
- Could be interpreted as "integral part of EH truncation procedure"
- Final cut-off kernel

 $\begin{aligned} R_k^{abcd}(\bar{Q}) &= \kappa_k^{-1} \left(\left[\det(\bar{Q}) \right]^{\frac{1}{2(1+D)}} K_+ E^* \cdot R_k(\overline{\Delta}_{D+1}) \cdot E \right)^{abcd}, \\ 2 K_+^{abcd} &= \bar{Q}^{a(c} \bar{Q}^{d)b} - u_+(r) \ \bar{Q}^{ab} \bar{Q}^{cd} \end{aligned}$

Conclusion

Effective average action - preparation Out-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Out-off kernels 3: tensor structure EH truncation flow

Cut-off kernels 3: tensor structure

• When computing $\bar{\Gamma}_k^{(2)}(\hat{Q}, \bar{Q})$ for the Wetterich eqn. a new effect arises when $r \neq 0$, structurally

 $< H, \ [\bar{\Gamma}_{k}^{(2)}(\hat{Q}, \bar{Q})]_{\hat{Q}=0} \cdot H >_{D} = < H, \ \{K_{1}(r) \cdot [-\partial_{s}^{2}] + K_{2}(r) \cdot [\overline{\Delta}_{D} + \partial_{s}^{2} + 2\Lambda_{k}] + U_{k}\} \cdot H >_{D}$

- U_k: non-minimal terms
- Time and space der. have different coeff.: $K_1(r) K_2(r) \propto r \neq 0$ unless D = 4
- Physically correct effect of taking the De-Witt metric Jacobean into account
- Honest treatment requires to go beyond EH-truncation theory space
- Ad hoc treatment: Define $K_{\pm}(r) = \frac{1}{2}[K_1(r) \pm K_2(r)]$, replace K_1, K_2 by K_+
- Could be interpreted as "integral part of EH truncation procedure"
- Final cut-off kernel

 $\begin{aligned} R_k^{abcd}(\bar{Q}) &= \kappa_k^{-1} \left(\left[\det(\bar{Q}) \right]^{\frac{1}{2(1+D)}} K_+ E^* \cdot R_k(\overline{\Delta}_{D+1}) \cdot E \right)^{abcd} \\ 2 K_+^{abcd} &= \bar{Q}^{a(c} \bar{Q}^{d)b} - u_+(r) \ \bar{Q}^{ab} \bar{Q}^{cd} \end{aligned}$

Conclusion

Effective average action - preparation Out-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Out-off kernels 3: tensor structure EH truncation flow

Cut-off kernels 3: tensor structure

• When computing $\bar{\Gamma}_k^{(2)}(\hat{Q}, \bar{Q})$ for the Wetterich eqn. a new effect arises when $r \neq 0$, structurally

 $< H, \ [\bar{\Gamma}_{k}^{(2)}(\hat{Q}, \bar{Q})]_{\hat{Q}=0} \cdot H >_{D} = < H, \ \{K_{1}(r) \cdot [-\partial_{s}^{2}] + K_{2}(r) \cdot [\overline{\Delta}_{D} + \partial_{s}^{2} + 2\Lambda_{k}] + U_{k}\} \cdot H >_{D}$

- U_k: non-minimal terms
- Time and space der. have different coeff.: $K_1(r) K_2(r) \propto r \neq 0$ unless D = 4
- Physically correct effect of taking the De-Witt metric Jacobean into account
- Honest treatment requires to go beyond EH-truncation theory space
- Ad hoc treatment: Define $K_{\pm}(r) = \frac{1}{2}[K_1(r) \pm K_2(r)]$, replace K_1, K_2 by K_+
- Could be interpreted as "integral part of EH truncation procedure"
- Final cut-off kernel

 $\begin{aligned} R_k^{abcd}(\bar{Q}) &= \kappa_k^{-1} \left(\left[\det(\bar{Q}) \right]^{\frac{1}{2(1+D)}} K_+ E^* \cdot R_k(\overline{\Delta}_{D+1}) \cdot E \right)^{abcd} \\ 2 \ K_+^{abcd} &= \bar{Q}^{a(c} \bar{Q}^{d)b} - u_+(r) \ \bar{Q}^{ab} \bar{Q}^{cd} \end{aligned}$

Conclusion

Effective average action - preparation Out-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions **Cut-off kernels 3: tensor structure** EH truncation flow

Cut-off kernels 3: tensor structure

• When computing $\bar{\Gamma}_k^{(2)}(\hat{Q}, \bar{Q})$ for the Wetterich eqn. a new effect arises when $r \neq 0$, structurally

 $< H, \ [\bar{\Gamma}_{k}^{(2)}(\hat{Q}, \bar{Q})]_{\hat{Q}=0} \cdot H >_{D} = < H, \ \{K_{1}(r) \cdot [-\partial_{s}^{2}] + K_{2}(r) \cdot [\overline{\Delta}_{D} + \partial_{s}^{2} + 2\Lambda_{k}] + U_{k}\} \cdot H >_{D}$

- U_k: non-minimal terms
- Time and space der. have different coeff.: $K_1(r) K_2(r) \propto r \neq 0$ unless D = 4
- Physically correct effect of taking the De-Witt metric Jacobean into account
- Honest treatment requires to go beyond EH-truncation theory space
- Ad hoc treatment: Define $K_{\pm}(r) = \frac{1}{2}[K_1(r) \pm K_2(r)]$, replace K_1, K_2 by K_+
- Could be interpreted as "integral part of EH truncation procedure"
- Final cut-off kernel

 $\begin{aligned} R_k^{abcd}(\bar{Q}) &= \kappa_k^{-1} \left([\det(\bar{Q})]^{\frac{1}{2(1+D)}} K_+ E^* \cdot R_k(\overline{\Delta}_{D+1}) \cdot E \right)^{abcd}, \\ 2 K_+^{abcd} &= \bar{Q}^{a(c} \bar{Q}^{d)b} - u_+(r) \ \bar{Q}^{ab} \bar{Q}^{cd} \end{aligned}$
Conclusion

Effective average action - preparation Out-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions **Cut-off kernels 3: tensor structure** EH truncation flow

Cut-off kernels 3: tensor structure

• When computing $\bar{\Gamma}_k^{(2)}(\hat{Q}, \bar{Q})$ for the Wetterich eqn. a new effect arises when $r \neq 0$, structurally

 $< H, \ [\bar{\Gamma}_{k}^{(2)}(\hat{Q}, \bar{Q})]_{\hat{Q}=0} \cdot H >_{D} = < H, \ \{K_{1}(r) \cdot [-\partial_{s}^{2}] + K_{2}(r) \cdot [\overline{\Delta}_{D} + \partial_{s}^{2} + 2\Lambda_{k}] + U_{k}\} \cdot H >_{D}$

- U_k: non-minimal terms
- Time and space der. have different coeff.: $K_1(r) K_2(r) \propto r \neq 0$ unless D = 4
- Physically correct effect of taking the De-Witt metric Jacobean into account
- Honest treatment requires to go beyond EH-truncation theory space
- Ad hoc treatment: Define $K_{\pm}(r) = \frac{1}{2}[K_1(r) \pm K_2(r)]$, replace K_1, K_2 by K_+
- Could be interpreted as "integral part of EH truncation procedure"
- Final cut-off kernel

$$\begin{aligned} R_k^{abcd}(\bar{Q}) &= \kappa_k^{-1} \left(\left[\det(\bar{Q}) \right]^{\frac{1}{2(1+rD)}} K_+ E^* \cdot R_k(\overline{\Delta}_{D+1}) \cdot E \right)^{abcd}, \\ 2 K_+^{abcd} &= \bar{Q}^{a(c} \bar{Q}^{d)b} - u_+(r) \ \bar{Q}^{ab} \bar{Q}^{cd} \end{aligned}$$

Effective average action - preparation Out-off kernels 1: Laplacians Out-off kernels 2: cut-off functions Out-off kernels 3: tensor structure EH truncation flow

EH truncation flow

• Remaning analysis standard, here for D = 3, $r = r_3 = -\frac{1}{12}$

- dimensionless couplings $g_k = k^2 \kappa_k, \; \lambda_k = k^{-2} \Lambda_k$
- Geometric series expansion $Tr([P_k + U_k + R_k]^{-1} [k\partial_k R_k]) = \sum_{n=0}^{\infty} (-1)^n Tr(P_k^{-1} ([U_k + R_k] P_k^{-1})^n [k\partial_k R_k])$
- $P_k = \kappa_k^{-1} K_+ \cdot E^* \cdot (-\overline{\Delta}_4 + 2\Lambda_k) \cdot E$
- Ignore effects from $[\overline{\Delta}_4, E \cdot E^*] \neq 0$ in a first step (as above)
- heat kernel representation $(-\overline{\Delta}_4 + 2\Lambda_k)^{-1} = k^2 \int_0^\infty dt \ e^{-2\lambda_k} s \ e^{s \ \overline{\Delta}_4/k^2}$
- Heat kernel traces for arbitrary \bar{g}_{ab} s.t. $\bar{g}_{s\mu} = \delta^s_{\mu}$
- Barnes integral technology to compute $(n > m \ge 1)$ $[-\overline{\Delta}_4 + 2\Lambda_k]^{-[n-m]} R_k^{m-1}[k \ \partial_k R_k]$

Effective average action - preparation Out-off kernels 1: Laplacians Out-off kernels 2: cut-off functions Out-off kernels 3: tensor structure EH truncation flow

- Remaning analysis standard, here for D = 3, $r = r_3 = -\frac{1}{12}$
- dimensionless couplings g_k = k² κ_k, λ_k = k⁻² Λ_k
- Geometric series expansion $Tr([P_k + U_k + R_k]^{-1} [k\partial_k R_k]) = \sum_{n=0}^{\infty} (-1)^n Tr(P_k^{-1} ([U_k + R_k] P_k^{-1})^n [k\partial_k R_k])$
- $P_k = \kappa_k^{-1} K_+ \cdot E^* \cdot (-\overline{\Delta}_4 + 2\Lambda_k) \cdot E$
- Ignore effects from $[\overline{\Delta}_4, E \cdot E^*] \neq 0$ in a first step (as above)
- heat kernel representation $(-\overline{\Delta}_4 + 2\Lambda_k)^{-1} = k^2 \int_0^\infty dt \ e^{-2\lambda_k \ s} \ e^{s \ \overline{\Delta}_4/k^2}$
- Heat kernel traces for arbitrary \bar{g}_{ab} s.t. $\bar{g}_{s\mu} = \delta^s_{\mu}$
- Barnes integral technology to compute $(n > m \ge 1)$ $[-\overline{\Delta}_4 + 2\Lambda_k]^{-[n-m]} R_k^{m-1}[k \partial_k R_k]$

Effective average action - preparation Dut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Dut-off kernels 3: tensor structure EH truncation flow

- Remaning analysis standard, here for D = 3, $r = r_3 = -\frac{1}{12}$
- dimensionless couplings g_k = k² κ_k, λ_k = k⁻² Λ_k
- Geometric series expansion $\operatorname{Tr}([P_k + U_k + R_k]^{-1} [k\partial_k R_k]) = \sum_{n=0}^{\infty} (-1)^n \operatorname{Tr}(P_k^{-1} ([U_k + R_k] P_k^{-1})^n [k\partial_k R_k])$
- $P_k = \kappa_k^{-1} K_+ \cdot E^* \cdot (-\overline{\Delta}_4 + 2\Lambda_k) \cdot E$
- Ignore effects from $[\overline{\Delta}_4, E \cdot E^*] \neq 0$ in a first step (as above)
- heat kernel representation $(-\overline{\Delta}_4 + 2\Lambda_k)^{-1} = k^2 \int_0^\infty dt \; e^{-2\lambda_k \; s} \; e^{s \; \overline{\Delta}_4/k^2}$
- Heat kernel traces for arbitrary \bar{g}_{ab} s.t. $\bar{g}_{s\mu} = \delta^s_{\mu}$
- Barnes integral technology to compute $(n > m \ge 1)$ $[-\overline{\Delta}_4 + 2\Lambda_k]^{-[n-m]} R_k^{m-1}[k \partial_k R_k]$

Effective average action - preparation Out-off kernels 1: Laplacians Out-off kernels 2: cut-off functions Out-off kernels 3: tensor structure EH truncation flow

- Remaning analysis standard, here for D = 3, $r = r_3 = -\frac{1}{12}$
- dimensionless couplings g_k = k² κ_k, λ_k = k⁻² Λ_k
- Geometric series expansion $\operatorname{Tr}([P_k + U_k + R_k]^{-1} [k\partial_k R_k]) = \sum_{n=0}^{\infty} (-1)^n \operatorname{Tr}(P_k^{-1} ([U_k + R_k] P_k^{-1})^n [k\partial_k R_k])$

•
$$P_k = \kappa_k^{-1} K_+ \cdot E^* \cdot (-\overline{\Delta}_4 + 2\Lambda_k) \cdot E$$

- Ignore effects from $[\overline{\Delta}_4, E \cdot E^*] \neq 0$ in a first step (as above)
- heat kernel representation $(-\overline{\Delta}_4 + 2\Lambda_k)^{-1} = k^2 \int_0^\infty dt \; e^{-2\lambda_k \; s} \; e^{s \; \overline{\Delta}_4/k^2}$
- Heat kernel traces for arbitrary \bar{g}_{ab} s.t. $\bar{g}_{s\mu} = \delta^s_{\mu}$
- Barnes integral technology to compute $(n > m \ge 1)$ $[-\overline{\Delta}_4 + 2\Lambda_k]^{-[n-m]} R_k^{m-1}[k \ \partial_k R_k]$

Effective average action - preparation Out-off kernels 1: Laplacians Out-off kernels 2: cut-off functions Out-off kernels 3: tensor structure EH truncation flow

- Remaning analysis standard, here for D = 3, $r = r_3 = -\frac{1}{12}$
- dimensionless couplings g_k = k² κ_k, λ_k = k⁻² Λ_k
- Geometric series expansion $\operatorname{Tr}([P_k + U_k + R_k]^{-1} [k\partial_k R_k]) = \sum_{n=0}^{\infty} (-1)^n \operatorname{Tr}(P_k^{-1} ([U_k + R_k] P_k^{-1})^n [k\partial_k R_k])$
- $P_k = \kappa_k^{-1} K_+ \cdot E^* \cdot (-\overline{\Delta}_4 + 2\Lambda_k) \cdot E$
- Ignore effects from [∆4, E · E*] ≠ 0 in a first step (as above)
- heat kernel representation $(-\overline{\Delta}_4 + 2\Lambda_k)^{-1} = k^2 \int_0^\infty dt \ e^{-2\lambda_k s} \ e^{s \ \overline{\Delta}_4/k^2}$
- Heat kernel traces for arbitrary \bar{g}_{ab} s.t. $\bar{g}_{s\mu} = \delta^s_{\mu}$
- Barnes integral technology to compute $(n > m \ge 1)$ $[-\overline{\Delta}_4 + 2\Lambda_k]^{-[n-m]} R_k^{m-1}[k \partial_k R_k]$

Effective average action - preparation Out-off kernels 1: Laplacians Out-off kernels 2: cut-off functions Out-off kernels 3: tensor structure EH truncation flow

- Remaning analysis standard, here for D = 3, $r = r_3 = -\frac{1}{12}$
- dimensionless couplings g_k = k² κ_k, λ_k = k⁻² Λ_k
- Geometric series expansion $\operatorname{Tr}([P_k + U_k + R_k]^{-1} [k\partial_k R_k]) = \sum_{n=0}^{\infty} (-1)^n \operatorname{Tr}(P_k^{-1} ([U_k + R_k] P_k^{-1})^n [k\partial_k R_k])$
- $P_k = \kappa_k^{-1} K_+ \cdot E^* \cdot (-\overline{\Delta}_4 + 2\Lambda_k) \cdot E$
- Ignore effects from $[\overline{\Delta}_4, E \cdot E^*] \neq 0$ in a first step (as above)
- heat kernel representation $(-\overline{\Delta}_4 + 2\Lambda_k)^{-1} = k^2 \int_0^\infty dt \ e^{-2\lambda_k \ s} \ e^{s \ \overline{\Delta}_4/k^2}$
- Heat kernel traces for arbitrary \bar{g}_{ab} s.t. $\bar{g}_{s\mu} = \delta^s_{\mu}$
- Barnes integral technology to compute $(n > m \ge 1)$ $[-\overline{\Delta}_4 + 2\Lambda_k]^{-[n-m]} R_k^{m-1}[k \ \partial_k R_k]$

Effective average action - preparation Out-off kernels 1: Laplacians Out-off kernels 2: cut-off functions Out-off kernels 3: tensor structure EH truncation flow

- Remaning analysis standard, here for D = 3, $r = r_3 = -\frac{1}{12}$
- dimensionless couplings g_k = k² κ_k, λ_k = k⁻² Λ_k
- Geometric series expansion $\operatorname{Tr}([P_k + U_k + R_k]^{-1} [k\partial_k R_k]) = \sum_{n=0}^{\infty} (-1)^n \operatorname{Tr}(P_k^{-1} ([U_k + R_k] P_k^{-1})^n [k\partial_k R_k])$
- $P_k = \kappa_k^{-1} K_+ \cdot E^* \cdot (-\overline{\Delta}_4 + 2\Lambda_k) \cdot E$
- Ignore effects from $[\overline{\Delta}_4, E \cdot E^*] \neq 0$ in a first step (as above)
- heat kernel representation $(-\overline{\Delta}_4 + 2\Lambda_k)^{-1} = k^2 \int_0^\infty dt \ e^{-2\lambda_k \ s} \ e^{s \ \overline{\Delta}_4/k^2}$
- Heat kernel traces for arbitrary \bar{g}_{ab} s.t. $\bar{g}_{s\mu} = \delta^s_{\mu}$
- Barnes integral technology to compute $(n > m \ge 1)$ $[-\overline{\Delta}_4 + 2\Lambda_k]^{-[n-m]} R_k^{m-1}[k \ \partial_k R_k]$

Effective average action - preparation Out-off kernels 1: Laplacians Out-off kernels 2: cut-off functions Out-off kernels 3: tensor structure EH truncation flow

- Remaning analysis standard, here for D = 3, $r = r_3 = -\frac{1}{12}$
- dimensionless couplings g_k = k² κ_k, λ_k = k⁻² Λ_k
- Geometric series expansion $\operatorname{Tr}([P_k + U_k + R_k]^{-1} [k\partial_k R_k]) = \sum_{n=0}^{\infty} (-1)^n \operatorname{Tr}(P_k^{-1} ([U_k + R_k] P_k^{-1})^n [k\partial_k R_k])$
- $P_k = \kappa_k^{-1} K_+ \cdot E^* \cdot (-\overline{\Delta}_4 + 2\Lambda_k) \cdot E$
- Ignore effects from $[\overline{\Delta}_4, E \cdot E^*] \neq 0$ in a first step (as above)
- heat kernel representation $(-\overline{\Delta}_4 + 2\Lambda_k)^{-1} = k^2 \int_0^\infty dt \ e^{-2\lambda_k \ s} \ e^{s \ \overline{\Delta}_4/k^2}$
- Heat kernel traces for arbitrary \bar{g}_{ab} s.t. $\bar{g}_{s\mu} = \delta^s_{\mu}$
- Barnes integral technology to compute $(n > m \ge 1)$ $[-\overline{\Delta}_4 + 2\Lambda_k]^{-[n-m]} R_k^{m-1}[k \ \partial_k R_k]$

• Beta fns: non-trivial r-dependence, polynomial in g, analyt. in λ

- UV NGFP $\lambda_* = 1.92, \ g_* = 57.41, \text{ IR GFP } \lambda_* = g_* = 0$
- crit. exp. $(\lambda \lambda^*, g g_* \propto [\frac{k_0}{k}]^{\theta_1/2})$: $(\theta_1, \theta_2) = (8.01, 2.13)$ (NGFP) (2, -2) (GFP)

Relevant couplings, fixed point values in qualitative agreement with foliated gravity (matter) approach [Blemanns, Korver, Manrique, Platania, Rechenberger, Saueressig, Wang] ...

- ... although conceptual setup quite different: only true d.o.f. PI (no ghosts), different treatment of time derivatives, unitary vs STT gauge, r – dependent density weight
- important to CQG: existence of true E.A. Γ i.e. finite dimensionful couplings as $k \rightarrow 0$, of course depending on trajectory (relevant couplings)

- Beta fns: non-trivial r-dependence, polynomial in g, analyt. in λ
- UV NGFP $\lambda_* = 1.92, \ g_* = 57.41, \ \mathsf{IR} \ \mathsf{GFP} \ \lambda_* = g_* = 0$
- crit. exp. $(\lambda \lambda^*, g g_* \propto [\frac{\kappa_0}{k}]^{\theta_1/2})$: $(\theta_1, \theta_2) = (8.01, 2.13)$ (NGFP) (2, -2) (GFP)

 Relevant couplings, fixed point values in qualitative agreement with foliated gravity (matter) approach (Biemanns, Korver, Manrique, Platania, Rechenberger, Saueressig, Wang) ...

- ... although conceptual setup quite different: only true d.o.f. PI (no ghosts), different treatment of time derivatives, unitary vs STT gauge, r – dependent density weight
- important to CQG: existence of true E.A. Γ i.e. finite dimensionful couplings as $k \rightarrow 0$, of course depending on trajectory (relevant couplings)

- Beta fns: non-trivial r-dependence, polynomial in g, analyt. in λ
- UV NGFP $\lambda_* =$ 1.92, $g_* =$ 57.41, IR GFP $\lambda_* = g_* =$ 0
- crit. exp. $(\lambda \lambda^*, g g_* \propto [\frac{k_0}{k}]^{\theta_1/2}$): $(\theta_1, \theta_2) = (8.01, 2.13)$ (NGFP) (2, -2) (GFP)
- Relevant couplings, fixed point values in qualitative agreement with foliated gravity (matter) approach [Blemanns, Korver, Manrique, Platania, Rechenberger, Saueressig, Wang] ...
- ... although conceptual setup quite different: only true d.o.f. PI (no ghosts), different treatment of time derivatives, unitary vs STT gauge, r – dependent density weight
- important to CQG: existence of true E.A. Γ i.e. finite dimensionful couplings as $k \rightarrow 0$, of course depending on trajectory (relevant couplings)

- Beta fns: non-trivial r-dependence, polynomial in g, analyt. in λ
- UV NGFP $\lambda_* =$ 1.92, $g_* =$ 57.41, IR GFP $\lambda_* = g_* =$ 0
- crit. exp. $(\lambda \lambda^*, g g_* \propto [\frac{k_0}{k}]^{\theta_{1/2}})$: $(\theta_1, \theta_2) = (8.01, 2.13)$ (NGFP) (2, -2) (GFP)
- Relevant couplings, fixed point values in qualitative agreement with foliated gravity (matter) approach (Biemanns, Korver, Manrique, Platania, Rechenberger, Saueressig, Wang) ...
- ... although conceptual setup quite different: only true d.o.f. PI (no ghosts), different treatment of time derivatives, unitary vs STT gauge, r – dependent density weight
- important to CQG: existence of true E.A. Γ i.e. finite dimensionful couplings as $k \rightarrow 0$, of course depending on trajectory (relevant couplings)

- Beta fns: non-trivial r-dependence, polynomial in g, analyt. in λ
- UV NGFP $\lambda_* =$ 1.92, $g_* =$ 57.41, IR GFP $\lambda_* = g_* = 0$
- crit. exp. $(\lambda \lambda^*, g g_* \propto [\frac{k_0}{k}]^{\theta_{1/2}})$: $(\theta_1, \theta_2) = (8.01, 2.13)$ (NGFP) (2, -2) (GFP)
- Relevant couplings, fixed point values in qualitative agreement with foliated gravity (matter) approach [Biemanns, Korver, Manrique, Platania, Rechenberger, Saueressig, Wang] ...
- ... although conceptual setup quite different: only true d.o.f. PI (no ghosts), different treatment of time derivatives, unitary vs STT gauge, r – dependent density weight
- important to CQG: existence of true E.A. Γ i.e. finite dimensionful couplings as $k \rightarrow 0$, of course depending on trajectory (relevant couplings)

- Beta fns: non-trivial r-dependence, polynomial in g, analyt. in λ
- UV NGFP $\lambda_* =$ 1.92, $g_* =$ 57.41, IR GFP $\lambda_* = g_* =$ 0
- crit. exp. $(\lambda \lambda^*, g g_* \propto [\frac{k_0}{k}]^{\theta_{1/2}})$: $(\theta_1, \theta_2) = (8.01, 2.13)$ (NGFP) (2, -2) (GFP)
- Relevant couplings, fixed point values in qualitative agreement with foliated gravity (matter) approach (Biemanns, Korver, Manrique, Platania, Rechenberger, Saueressig, Wang) ...
- ... although conceptual setup quite different: only true d.o.f. PI (no ghosts), different treatment of time derivatives, unitary vs STT gauge, r – dependent density weight
- important to CQG: existence of true E.A. Γ i.e. finite dimensionful couplings as $k \rightarrow 0$, of course depending on trajectory (relevant couplings)

Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow

Figure: Flow diagramme in $\lambda - g$ plane for $r_3 = -\frac{1}{12}$, D = 3, trajectories point to decreasing k, all originate from UV NGFP (purple dot). Red dashed line: "curtain" (pole line of beta functions, flow unreliable beyond). Green line: separatrix connecting UV NGFP and IR GFP (red dot).

Introduction and model Canonical q'ion and Schwinger functions for Lorentzian QG ASQG renormalisation Conclusion	Effective average action - preparation Cut-off kernels 1: Laplacians Cut-off kernels 2: cut-off functions Cut-off kernels 3: tensor structure EH truncation flow
---	--

Figure: Small *k* regime of the dimensionful cosmological constant and Newton's constant. Both couplings reach a finite value when $k \rightarrow 0$. This value depends on the initial conditions.

- ASQG and CQG methods in harmonic interaction in concrete matter model with transparent physics
- Lorentzian signature Hamiltonian and Euclidian signature action coexist without contradiction
- Relational formalism leads to different treatment of gauge invariance
- First principle derivation of PI leads to measure Jacobeans which necessarily have non-trivial influence on flow and truncation spaces
- State dependence explicitly monitored
- New cut-off functions granted to be Laplace images and associated analytical methods related to Barnes integral identities
- Technical and conceptual overlap with foliated ASQG

- ASQG and CQG methods in harmonic interaction in concrete matter model with transparent physics
- Lorentzian signature Hamiltonian and Euclidian signature action coexist without contradiction
- Relational formalism leads to different treatment of gauge invariance
- First principle derivation of PI leads to measure Jacobeans which necessarily have non-trivial influence on flow and truncation spaces
- State dependence explicitly monitored
- New cut-off functions granted to be Laplace images and associated analytical methods related to Barnes integral identities
- Technical and conceptual overlap with foliated ASQG

- ASQG and CQG methods in harmonic interaction in concrete matter model with transparent physics
- Lorentzian signature Hamiltonian and Euclidian signature action coexist without contradiction
- Relational formalism leads to different treatment of gauge invariance
- First principle derivation of PI leads to measure Jacobeans which necessarily have non-trivial influence on flow and truncation spaces
- State dependence explicitly monitored
- New cut-off functions granted to be Laplace images and associated analytical methods related to Barnes integral identities
- Technical and conceptual overlap with foliated ASQG

- ASQG and CQG methods in harmonic interaction in concrete matter model with transparent physics
- Lorentzian signature Hamiltonian and Euclidian signature action coexist without contradiction
- Relational formalism leads to different treatment of gauge invariance
- First principle derivation of PI leads to measure Jacobeans which necessarily have non-trivial influence on flow and truncation spaces
- State dependence explicitly monitored
- New cut-off functions granted to be Laplace images and associated analytical methods related to Barnes integral identities
- Technical and conceptual overlap with foliated ASQG

- ASQG and CQG methods in harmonic interaction in concrete matter model with transparent physics
- Lorentzian signature Hamiltonian and Euclidian signature action coexist without contradiction
- Relational formalism leads to different treatment of gauge invariance
- First principle derivation of PI leads to measure Jacobeans which necessarily have non-trivial influence on flow and truncation spaces
- State dependence explicitly monitored
- New cut-off functions granted to be Laplace images and associated analytical methods related to Barnes integral identities
- Technical and conceptual overlap with foliated ASQG

- ASQG and CQG methods in harmonic interaction in concrete matter model with transparent physics
- Lorentzian signature Hamiltonian and Euclidian signature action coexist without contradiction
- Relational formalism leads to different treatment of gauge invariance
- First principle derivation of PI leads to measure Jacobeans which necessarily have non-trivial influence on flow and truncation spaces
- State dependence explicitly monitored
- New cut-off functions granted to be Laplace images and associated analytical methods related to Barnes integral identities
- Technical and conceptual overlap with foliated ASQG

- ASQG and CQG methods in harmonic interaction in concrete matter model with transparent physics
- Lorentzian signature Hamiltonian and Euclidian signature action coexist without contradiction
- Relational formalism leads to different treatment of gauge invariance
- First principle derivation of PI leads to measure Jacobeans which necessarily have non-trivial influence on flow and truncation spaces
- State dependence explicitly monitored
- New cut-off functions granted to be Laplace images and associated analytical methods related to Barnes integral identities
- Technical and conceptual overlap with foliated ASQG