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e But this is not the final word in neutrino physics...

f\, = Observed phenomena: neutrinos oscillation
u

Neutrinos that are emitted with a given flavour (e.g. in the Sun)
are detected with different flavours

V‘l’ = Explanation: Neutrinos are massive particles
(with mass basis different from flavour basis)
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* Active experiments to test the nature of neutrino masses Safe Gravity

could work as indirect tests of asymptotically safe gravity

Naturally small Yukawa couplings from Dynamically vanishing Dirac neutrino mass from quantum scale
trans-Planckian asymptotic safety symmetry

Kamila Kowalska, Soumita Pramanick and Enrico Maria Sessolo Astrid Eichhorn?, Aaron Held ™"

ABSTRACT: In gauge-Yukawa systems embedded in the framework of trans-Planckian ABSTRACT

asymptotic safety we discuss the dynamical generation of arbitrarily small Yukawa cou-

lings driven by the presence of a non-interactive infrared-attractive fixed point in the . . . . . . .
pung Y P P We present a mechanism which drives Dirac neutrino masses to tiny values along the Renormalization

Group flow, starting from an asymptotically safe ultraviolet completion of the third generation of the
Standard Model including quantum gravity. At the same time, the mechanism produces a mass-splitting
between the neutrino and the quark sector and also generates the mass splitting between top and bottom
quark. The mechanism hinges on the hypercharges of the fermions and produces a tiny neutrino Yukawa
coupling, because the right-handed neutrino is sterile and does not carry hypercharge.

renormalization group flow. Additional ultraviolet-attractive fixed points guarantee that
the theory remains well defined up to an infinitely high scale. We apply this mechanism
to the Yukawa couplings of the Standard Model extended with right-handed neutrinos,
finding that asymptotically safe solutions in agreement with the current experimental de-
termination of the masses and mixing angles exist for Dirac neutrinos with normal mass
ordering. We generalize the discussion by applying the same mechanism to a new-physics

model with sterile-neutrino dark matter, where we generate naturally the feeble Yukawa

interaction required to reproduce via freeze-in the correct relic abundance.

See also: A. Held Ph.D. thesis, 2019

See also:

Domenech, Goodsell and Wetterich, 2021
Chikkaballi, Kowalska and Sessolo, 2023

For massive neutrinos with see-saw scale
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In the rest of this talk, | will discuss three scenarios for massive neutrinos in ASQG

e Scenario I:
Massive neutrinos from Weinberg operator
(without right-handed neutrinos)

e Scenario ll:
Majorana massive neutrinos from see-
saw mechanism (type )

e Scenario lll:
Pseudo-Dirac massive neutrinos

Incompatible with asymptotically safe gravity
Indication that extra degrees of freedom are
necessary for UV completion

Not incompatible with EFT perspective

-

-

Compatible with asymptotically safe gravity

Upper bound on the see-saw scale:
mp < 101 GeV (assuming m, obs ~ 10719 GeV)

-

-

-

Compatible with asymptotically safe gravity
No upper or lower bound from this scenario

We can tune the relevant parameters to embed
this scenario into asymptotically safe gravity
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Neutrino Masses in Asymptotically Safe Gravity

Working hypothesis:

“Asymptotically Safe Gravity is Near-Perturbative”

Strong evidence from pure gravity and gravity + “minimal matter”

Falls, Litim, Nikolakopoulos and Rahmede, 2013
Falls, Litim and Schroder, 2018
Eichhorn, Lippoldt, Pawlowski, Reichert and Schiffer, 2018
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* The Weinberg operator is the dimension-5 operator:

_ . i c * k is a mass scale to keep ( Dimensionless
((LU2H J(H'o2L™) + h.c. ) We will also use it to define the renormalization
group flow

L:Weinberg -

oy

* Neutrino mass arises from the Higgs vacuum expectation value

H = <H> + OH = ['Weinberg — % (ﬁLVg + hC) + .-
C 9

k

* Usually considered as part of the SMEFT (as a lepton number violating term)
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* A popular scenario for massive neutrinos is based on the see-saw mechanism

L, D % (DRyg + h.c.) + vy, (EﬁVR + h.C.> — L, D % (ﬂRug + h.c.) +mp (Vrvr +h.c) + -
SSB

1

Mmp = —=YuVH
= Mass matrix M, = < X mR) V2
mr Mmp

* The eigenstates of the mass matrix are Majorana fermions (neutrinos ~ anti-neutrinos)

= Smoking gun signature for Majorana neutrinos: neutrinoless double beta decay

* Searches at various experiments:

* Eigenvalues of the mass matrix and the see-saw mechanism NEMO-3;
NEXT-100;KamLAND-Zen;
me 1 Imy| ~ mpg EX0-200; CUORE; GERDA
mlgz—i—\/mR+4m% mpgr > mp = m2
’ 2 2 Imeo| & D
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mpg

= The mass of the light neutrino gets suppressed by a factor mp/mgr < 1
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Can we accommodate such scenario within asymptotically safe gravity?

* Yes! We can construct explicit RG trajectories that are UV complete for all couplings

= The Majorana mass is relevant at a
fixed point with mp = 0

Thus, we have enough freedom to
accommodate non-vanishing Majorana
masses in the infrared

running couplings

0.50"

0.10"
0.05"

0.01:

100 1020 10 10%
k/GeV

Yt

Yb

Yr

Yu



Majorana Neutrinos and See-Saw Mechanism

Asymptotically safe gravity generates an upper bound on the see-saw scale



Majorana Neutrinos and See-Saw Mechanism

Asymptotically safe gravity generates an upper bound on the see-saw scale

* An upper bound arises as follows:

m
D
My obs = |m2| ~
mp
2,2
Yy Vp
= My obs <
2mR

2
Yy vH < yv,upper UH
2 My obs 2 My obs



Majorana Neutrinos and See-Saw Mechanism

Asymptotically safe gravity generates an upper bound on the see-saw scale

An upper bound arises as follows:

2
mp

My obs = |m2| ~ MR

2,2
Y, Vn
= My obs <
2 mpg
2,2 2 2
Y, Vu yv,upper Up
= MR~
2 My obs 2 My obs

1610 1614 1618

RG-scale in GeV
Parametrised quantum

gravity contribution
#y
= f, > 0 from “background computation”



Majorana Neutrinos and See-Saw Mechanism

Asymptotically safe gravity generates an upper bound on the see-saw scale

An upper bound arises as follows:

2
mp

My obs = |m2| ~ MR

2,2
Y, Vn
= My obs <
2 mpg
2,2 2 2
Y, Vu yv,upper Up
= MR~
2 My obs 2 My obs

1610 1614 1618

RG-scale in GeV
Parametrised quantum

gravity contribution
#y
= f, > 0 from “background computation”

* See Marc Schiffer’s talk



Majorana Neutrinos and See-Saw Mechanism

Asymptotically safe gravity generates an upper bound on the see-saw scale

An upper bound arises as follows:

2
mp

My obs = |m2| ~ MR

2,2
Y, Vn
= My obs <
2 mpg
2,2 2 2
Y, Vu yv,upper Up
= MR~
2 My obs 2 My obs

Assuming M, ops ~ 1071° GeV

mp < 101 GeV
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* See Marc Schiffer’s talk
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Asymptotically safe gravity generates an upper bound on the see-saw scale

e An upper bound arises as follows:

m
D
ml/,ObS — |m2| ~
mp
2,2
Yy Vp
= My obs ~
2 mpg

2,2 2 2
yy UH < yu,upper UH

2 My obs 2 My obs

= MR~

Assuming M, obs ~ 10710 GeV

mpeg 5 1014 GeV

1007
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Excluded if we impose from Davidson-lbarra bound
(thermal leptogenis)
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» A different perspective on neutrinos with Majorana masses

1 1
M, = O mr = mmZ@i—\/meulm% — mp >mpr = |miz|=mp=E _mp
mpr Mp ’ 2 2 2

* The eigenstates of the mass matrix are called pseudo-Dirac
They behave almost like a Dirac neutrino, but not exactly

= Small lepton number violation (Dirac neutrinos features lepton number conservation)

= Almost maximal mixing between left-handed and right-handed neutrinos
(Dirac neutrinos features maximal mixing)

= Oscillation between both chiral components, even with a single generation
(Dirac do not oscillate in the single generation case (degenerate states))

: Franklin, Perez-Gonzalez and Turner, 2023
* Experimental searches at JUNO and DARWIN 00T S5 2008802 and THmer
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Pseudo-Dirac Massive Neutrinos

Can we accommodate such scenario within asymptotically safe gravity?

* Yes! Again, we can construct explicit RG trajectories that are UV complete for all couplings

= The Majorana mass is relevant at a fixed
point with m% =0

= We can work with trajectories connected
to y;, = 0 in the neutrino Yukawa sector

There enough room to choose the
Majorana mass to be much smaller than
the Dirac mass

= This scenario does not allow us to
extract new theoretical bounds from
asymptotically safe gravity

running couplings

...........
------

1020 1030 1040
k/GeV
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Summary

The interplay between massive neutrinos can ‘ .

. . . . Asymptotically
give valuable information about the landscape Neutrino masses o o Gravity

of asymptotically safe gravity & ﬁ

Neutrino masses from Weinberg operator
= |ncompatible with asymptotically safe gravity = |ndication that extra degrees of freedom
= Not incompatible with EFT perspective are necessary for UV completion

Majorana neutrinos and the see-saw mechanism

= Compatible with asymptotically safe gravity = Upper bound on the see-saw scale:
mpg < 10 GeV (assuming My obs ~ 10710 GeV)

Pseudo-Dirac massive neutrinos

= There is enough room to tune the free = No upper or lower bound from this scenario
parameters in harmony with asymptotic safety




Thank you for your attention!



